The Helmholtz Hippocampus: A biologically plausible generative model of the hippocampal formation

Tom George¹, Caswell Barry^{1,2}, Kimberly Stachenfeld^{3,4}, Claudia Clopath^{1,5}, Tomoki Fukai⁶

¹Sainsbury Wellcome Centre, UCL, London ²Department of Cell & Developmental Biology, UCL, London ³Columbia University, New York ⁴Google DeepMind, London UK ⁵Imperial College, London ⁶Okinawa Institute of Science and Technology, Japan

TL;DR?

See box 6

THE DUAL ROLE OF THE HIPPOCAMPUS

The hippocampal formation (HPC & MEC) has two main roles in navigation:

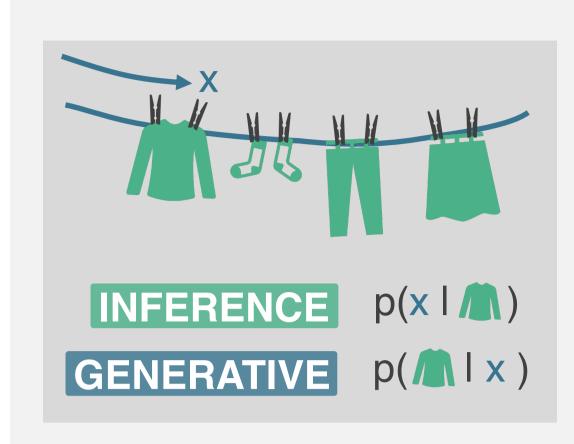
1. INFER self-location place cells, grid cells etc. 2. GENERATE trajectories offline replay^[1], memory consolidation^[2], planning^[3] 000000 MEC 000000 HPC

Existing models rely on biologically implausible assumptions^[4,5,6].

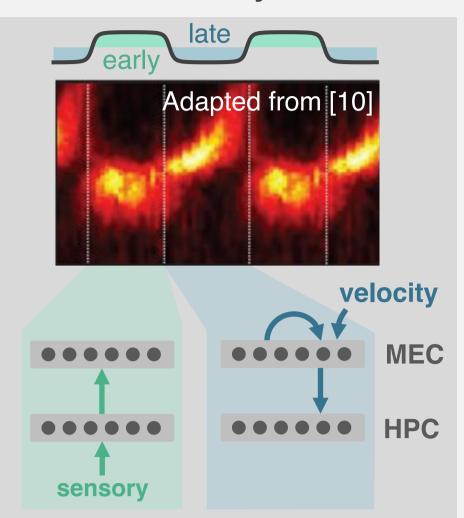
- Can a biologically plausible model account for these inferential and generative capacities.
- What would the architecture, dynamics and learning rules look like?
- What might it teach us about generative models in the brain?

2 BACKGROUND

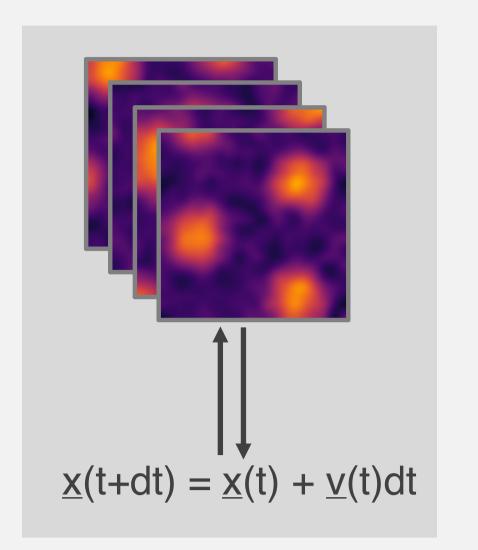
1. MEC learns a sensoryagnostic map of space. HPC binds sensory stimuli onto positions in this space[7,5].



2. During behaviour, inference and generation occur in distinct early and late phase of the 5-10 Hz theta rhythm^[8,9].

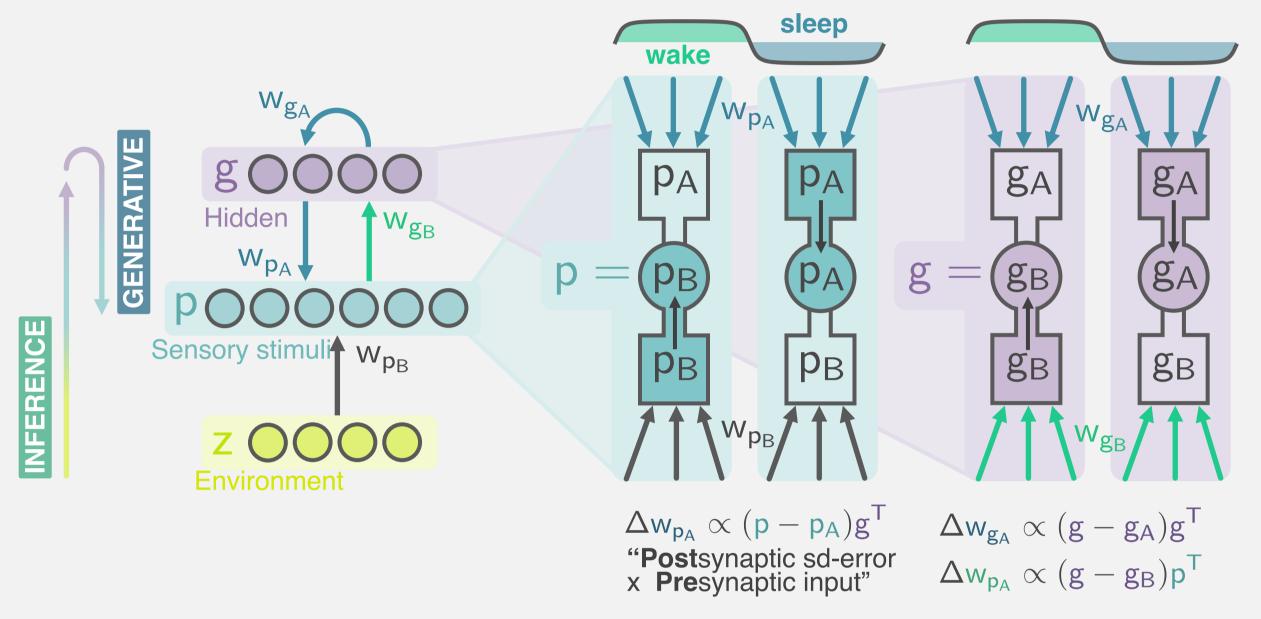


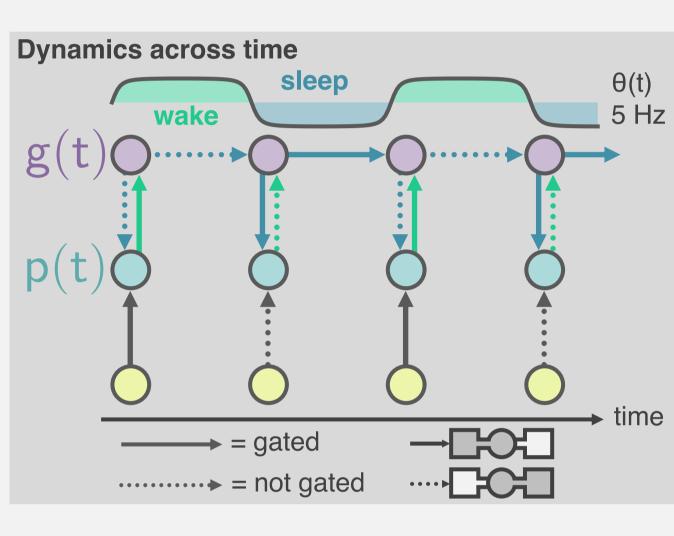
3. Path integration – a "generative" process is a fundamental pillar of MEC function^[11,4].



THE HELMHOLTZ HIPPOCAMPUS

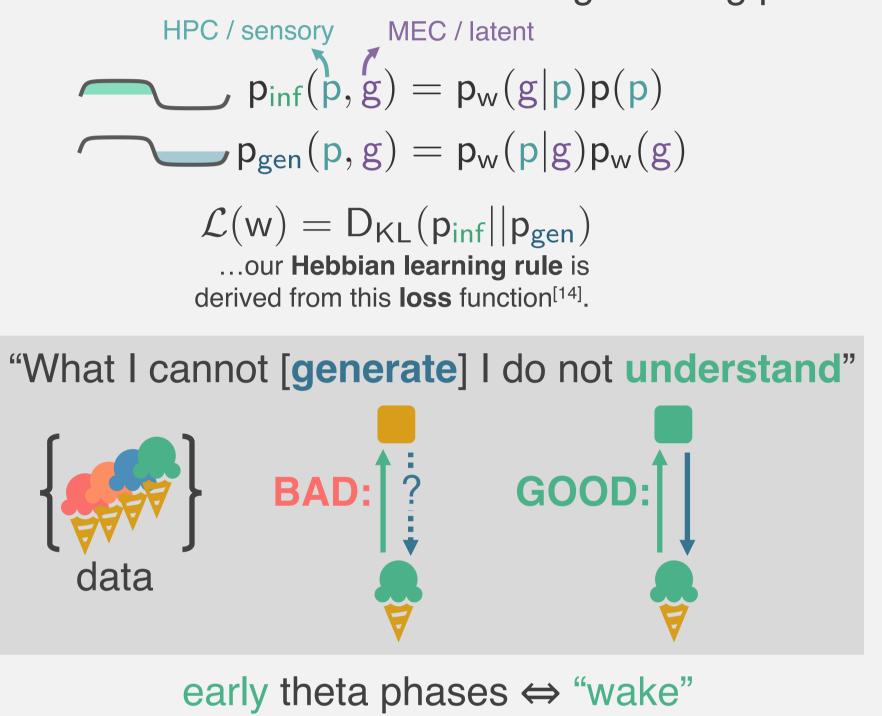
- A hierarchical network receives a continuous stream of sensory inputs.
- Inference and generative pathways arrive at distinct basal and apical dendritic compartments.
- LFP theta-rhythm (5-10 Hz) gates which compartment drives the soma, thus which way information flows.





4 THEORETICAL INTERPRETATION

Helmholtz machines^[13] (aka Boltzmann machines) learn latent models by matching inference and generative distributions in alternating learning phases.



late theta phases ⇔ "sleep"

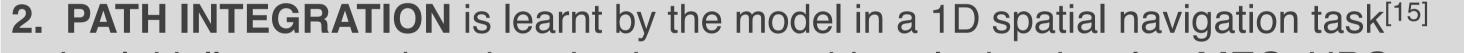
Training / min

- Inference and generative sampling occur in alternating 5-10 Hz wake-sleep phases.
- **Hebbian learning:** minimizes the somatic "prediction errors" [12] until $p_B \approx p_A$ and $g_B \approx g_A$

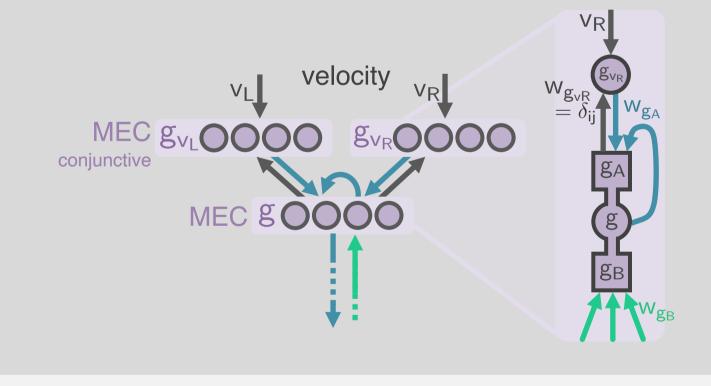
iPad

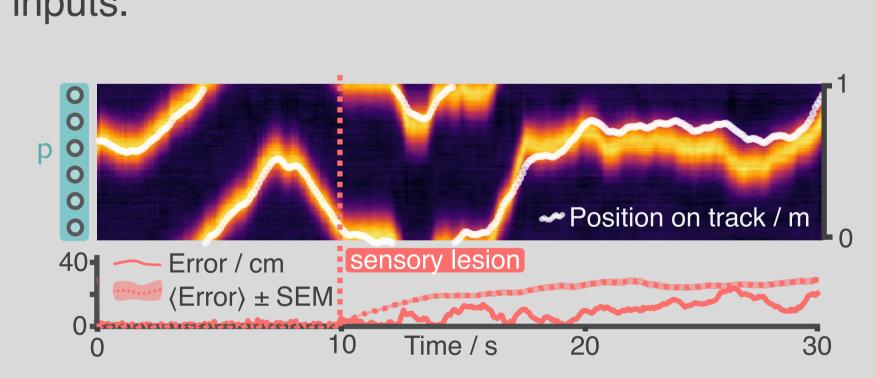
5 RESULTS

1. COMPRESSION: HPC learns to efficiently compress mixed, high-dimensional stimuli deriving from a small number of independent latents.



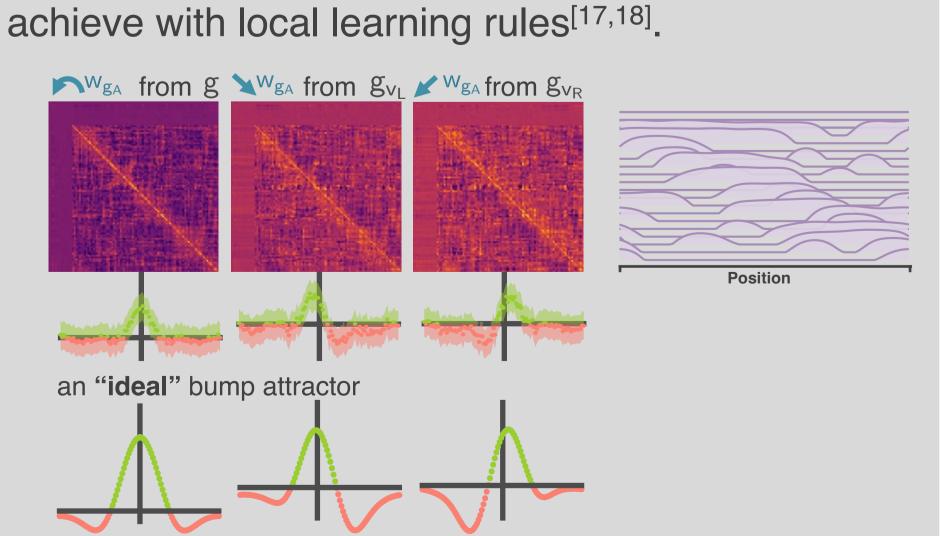
- Initially un-tuned conjunctive inputs provide velocity signal to MEC, HPC receives spatially-selective "place cell" inputs.
- ii. When sensory input is lesioned, top-down generative input from MEC accurately maintains position estimate by "integrating" its velocity inputs.





3. RING-ATTRACTOR: Weights in the hidden layer reveal a stable calibrated ring-attractor.

This theoretically justified^[16] solution is hard to



- 4. REMAPPING AND TRANSFER LEARNING: We tested "remapping" by fixing the MEC weights and shuffling sensory input
 - Model quickly remastered new environment by transferring (not relearning) path integration.
 - ii. MEC hidden representations reformed with constant phase shift, reminiscent of real grid cells^[14].

6 CONCLUSIONS

- Hippocampal architecture, dynamics and learning rules are highly similar to those of a Helmholtz machine. HPC maps sensory input to MEC which learns hidden latent structure.
- LFP Theta oscillations rapidly gate information flow to generate "wakesleep" learning phases with exclusively local learning rules.
- Various navigational function, including self-location, path-integration and transfer learning, can thence be explained without backpropagation.

NeurlPS 2023 paper:



[1] Lee & Wilson (2002), Memory of sequential experience in the hippocampus during slow wave sleep [2] Carr et al. (2011), Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval [3] Spiers and Maguire (2006), Thoughts, behaviour, and brain dynamics during navigation in the real world [4] Banino et al. (2018), Vector-based navigation using grid-like representations in artificial agents [5] Whittington et al. (2020), The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation [6] Sorscher et al. (2022), A unified theory for the computational and mechanistic origins of grid cells [7] Bellmund et al. (2018), Navigating cognition: Spatial codes for human thinking [8] Hasselmo et al. (2002), A Proposed Function for Hippocampal Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior Learning [9] Sanders and Lisman (2015), Grid Cells and Place Cells: An Integrated View of their Navigational and Memory Function [10] Wang et al. (2020), Alternating sequences of future and past behavior encoded within hippocampal theta oscillations [11] Dorrell et al. (2023), Actionable Neural Representations: Grid Cells from Minimal Constraints [12] Urbanczik and Senn (2014), Learning by the Dendritic Prediction of Somatic Spiking [13] Dayan et al. (1995), The Helmholtz Machine [14] Bredenberg et al. (2021), Impression learning: Online representation learning with synaptic plasticity [15] George et al. (2024), RatInABox, a toolkit for modelling locomotion and neuronal activity in continuous environments [16] Zhang (1996), Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory [17] Burak and Fiete (2009), Accurate path integration in continuous attractor network models of grid cells [18] Vafidis et al. (2022), Learning accurate path integration in ring attractor models of the head direction system [19] Fyhn et al. (2007), Hippocampal remapping and grid realignment in entorhinal cortex.

