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1 THE DUAL ROLE OF THE HIPPOCAMPUS 2 BACKGROUND
The hippocampal formation (HPC & MEC) has two main roles in navigation: 1. MEC learns a sensory- 2. During behaviour, 3. Path integration — a
agnostic map of space. and generation “generative” process —
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« What would the architecture, dynamics and learning rules look like? X(t+dt) = x(t) + v(t)dt
- What might it teach us about generative models in the brain? oot
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3 THE HELMHOLTZ HIPPOCAMPUS 4 THEORETICAL INTERPRETATION
- A hierarchical network receives a continuous stream of sensory inputs. Helmholtz machines!™ (aka Boltzmann machines)
and generative pathways arrive at distinct and apical dendritic compartments. learn latent models by maitching inie and
» LFP theta-rhythm (5-10 Hz) gates which Compartment drives the soma, thus which way information flows. generative distributions in alternating learning phases.
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- Hebbian learning: minimizes the somatic “prediction errors”2l until pg=p, and gz =g, ate theta phases < “sleep’

5 RESULTS

1. COMPRESSION: HPC learns to efficiently compress mixed, high-dimensional stimuli 1002
deriving from a small number of independent latents.
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2. PATH INTEGRATION is learnt by the model in a 1D spatial navigation task!'°] (ga — g8)
I. Initially un-tuned conjunctive inputs provide velocity signal to MEC, HPC receives

spatially-selective “place cell” inputs. 0 Training/min 30
ii. When sensory input is lesioned, top-down generative input from MEC accurately

maintains position estimate by “integrating” its velocity inputs.
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3. RING-ATTRACTOR: Weights in the hidden \ { %% 10  Time/s 20 30

layer reveal a stable calibrated ring-attractor.

This theoretically justified!'®! solution is hard to 4. REMAPPING AND TRANSFER LEARNING: We tested “remapping” by fixing the MEC weights and
achieve with local learning rulest!7.18l. shuffling sensory input
I.  Model quickly remastered new environment by transferring (not relearning) path integration .
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g g ii. MEC hidden representations reformed with constant phase shift, reminiscent of real grid cells!'4l.
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 Hippocampal architecture, dynamics and learning rules are highly
similar to those of a Helmholtz machine. HPC maps sensory input to
MEC which learns hidden latent structure.

 LFP Theta oscillations rapidly gate information flow to generate “wake-
sleep” learning phases with exclusively local learning rules.

» Various navigational function, including self-location, path-integration and
transfer learning, can thence be explained without backpropagation.
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