
SIMPL: Scalable and hassle-free optimization of neural representations from behaviour
Summary High-dimensional neural activity in the
brain is known to encode low-dimensional,
time-evolving, behaviour-related latent variables. A
fundamental goal of neural data analysis consists
of identifying such variables and their mapping to
neural activity. The canonical approach is to
assume the latent variables are behaviour (e.g. the
measured location of the animal) and visualise the
subsequent tuning curves. However, significant
mismatches between behaviour and the encoded
variables may still exist—the agent may be thinking
of another location, or be uncertain of its
own—distorting the tuning curves and decreasing
their interpretability. To address this issue a variety
of methods have been proposed to learn this latent
variable in an unsupervised manner; these
techniques are typically expensive to train, come
with many hyperparameters, or scale poorly to
large datasets complicating their adoption in practice. To solve these issues we propose SIMPL
(Scalable Iterative Maximization of Population-coded Latents); an EM-style algorithm which
iteratively optimises latent variables and tuning curves. SIMPL is fast, scalable and exploits
behaviour as an initial condition to improve convergence and identifiability. SIMPL accurately
recovers latent variables in a biologically-inspired spatial navigation task, outperforming a
contemporary neural-network based equivalent. When applied to a large rodent hippocampal
dataset SIMPL rapidly finds a modified latent space with smaller, more numerous, and more
uniformly-sized place fields than those based on behaviour, suggesting the brain encodes space
with greater resolution than previously thought.

Challenges It is well known that high-dimensional neural data is often explained by
low-dimensional “latent” variables which correlate strongly with behaviour. For example in the
hippocampus, where an animal’s position modulates the activity of grid cells and place cells etc.
through their distinctive (and celebrated) tuning curves. The fact that so much hippocampal
variance can be explained by behaviour means it is uncommon to explore further, particularly
since existing techniques are costly[1,2], lack easy-to-use implementations[3,4], are too simplistic to
model complex tuning curves[3,5], or scale poorly to large datasets[4,5]. This confounds tuning curve
interpretation: for instance non-local events like replay[6], theta sweeps[7], or route planning might
cause a place cell for position Y to fire when the animal is at X incorrectly suggesting the cell has
a field at X. Similarly, if an animal is uncertain about its position due to a lack of sensory cues,
sharply tuned fields may appear enlarged and blurred. Other sources of discrepancies could
exist. In summary: To accurately study the true tuning curves we must know the true encoded
latent, not just behaviour, motivating the search for a latent-discovery technique which is fast and
scalable and exploits the first-order similarity between latent and behaviour.

SIMPL SIMPL seeks an estimate of the true, unknown latent trajectory x*(t) and tuning curves
f*(x) which led to the observed spike train data s(t). It does so by iterating a two-step procedure
closely related to expectation-maximisation (EM)[8], Fig. 1b. For the “M-step” of each epoch (e)
SIMPL fits tuning curves f(e) using kernel density estimation; i.e. smoothing spikes against x(e) with
a small Gaussian kernel. For the “E-step” SIMPL decodes a new latent x(e+1) by finding the
maximum likelihood estimate of x given the latest tuning curves and Kalman smoothing it: x(e+1) =
KalmanSmooth[xMLE] where xMLE,t := argmaxx log p(st|x,f(e)). SIMPL requires an initial estimate x(0)
which we take to be behaviour (a good “first guess”, Fig. 1a). Our design choices impose minimal
assumptions on the structure of the data and are cheap, scaling well to large datasets—O(1 hour,
200 neurons, 106 spikes, dt=100 ms)→O(<1 min on a CPU-laptop). SIMPL’s decoding and fitting
subroutines closely match those already widely used in the field. In a theoretical analysis we draw
a formal link between SIMPL and EM for a broad class of generative models. A Python/JAX
implementation and demo is provided[9].

Artificial grid cell dataset We generated a large synthetic dataset of 225 spiking grid cells for
an agent undergoing a 1 hour smooth random walk in a 1 m2 environment[10]. Initial behaviour was



generated by adding slow noise to the true
latent (x(0)=x*+η, ⟨|η|⟩=20cm), simulating an
animal “uncertain” of its own position,
sufficient to blur almost all grid-structure
from the behavioural tuning curves (Fig. 2ab
top). SIMPL recovered accurate estimates of
the true latent and tuning curves (Fig. 2ab,
bottom). For comparison, we trained
CEBRA[2]—a popular neural network based
tool where behaviour serves as contrastive
labels—on this dataset using default
parameters (Fig. 2e). CEBRA was able to
find a good estimate of the latent which was
better than behaviour but worse than SIMPL
and took over 30x longer to train. In a further
analysis (not shown) we ran SIMPL from
random initial conditions: SIMPL recovered

estimates of the ground truth up to an isomorphism (such as φ(x*) & f*○φ-1 instead of x* & f*, for
some mapping φ), leading to tuning curves which predicted the spikes well but did not visually
resemble the original hexagonal tuning curves. Conversely, using behaviour as initial conditions
strongly biased the solution towards unwarped latent spaces (φ≈Id), addressing the identifiability
issue [11] commonly suffered by latent variable models.

Hippocampal dataset Finally, we ran SIMPL on a large hippocampal dataset, described in
Tanni et al.[12] and compared tuning curves before and after. We found that optimised tuning
curves—which remained visually similar to, but explained held-out spikes “better” than, their
behavioural counterparts, Fig. 3ac—had more place fields and were more spatially-informative.
The median place field shrunk in area by 25%, increased in firing rate by 45% and became
rounder (Fig. 3d). Large place fields often sharpened or fragmented (Fig. 3a). The optimised latent
remained close to behaviour with occasional sharp jumps. These changes were replicated in a
dataset from a second animal but not in a control dataset where spikes were resampled from the
behaviour and behavioural tuning curves, indicating they are real and not SIMPL artefacts. Also, a
previously observed non-uniformity in the place field size-distribution (fields in the middle of an
environment are larger than those at the edges[12]) was reduced. Together, these results imply
hippocampal cells encode space with more precision and uniformity than previously thought and
that latent optimization is an important step to reveal the true structure of the hippocampal code.

Conclusion We propose SIMPL: a minimal technique to optimise latents and tuning curves from
behavioural initialisations, effective on large neural datasets. Like other tools SIMPL will have
limitations: in such cases users could experiment with alternative fitting or decoding subroutines
– e.g. parametric curve fitting, an RNN decoder etc. which will come with their own costs and
benefits. In practice, SIMPL could function as a processing step in any pipeline for analysing
neural tuning curves, allowing researchers to rapidly deconfound behaviour from the true latent
and therefore make stronger claims about the true structure of representations in the brain.
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