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ABSTRACT

High-dimensional neural activity in the brain is known to encode low-
dimensional, time-evolving, behaviour-related variables. A fundamental goal of
neural data analysis consists of identifying such variables and their mapping to
neural activity. The canonical approach is to assume the latent variables are be-
haviour and visualize the subsequent tuning curves. However, significant mis-
matches between behaviour and the encoded variables may still exist — the agent
may be thinking of another location, or be uncertain of its own — distorting the
tuning curves and decreasing their interpretability. To address this issue a variety
of methods have been proposed to learn this latent variable in an unsupervised
manner; these techniques are typically expensive to train, come with many hyper-
parameters or scale poorly to large datasets complicating their adoption in prac-
tice. To solve these issues we propose SIMPL (Scalable Iterative Maximization
of Population-coded Latents), an EM-style algorithm which iteratively optimizes
latent variables and tuning curves. SIMPL is fast, scalable and exploits behaviour
as an initial condition to further improve convergence and identifiability. We
show SIMPL accurately recovers latent variables in biologically-inspired spatial
and non-spatial tasks. When applied to a large rodent hippocampal dataset STIMPL
efficiently finds a modified latent space with smaller, more numerous, and more
uniformly-sized place fields than those based on behaviour, suggesting the brain
may encode space with greater resolution than previously thought.

1 INTRODUCTION

Large neural populations in the brain are known to encode low-dimensional, time-evolving latent
variables which are, oftentimes, closely related to behaviour (Afshar et al., 2011; Harvey et al.,
2012; Mante et al.l 2013} |(Carnevale et al., 2015; [Kobak et al., 2016). Coupled with a recent data-
revolution driven by the advent of large-scale neural recording techniques (Jun et al.| [2017; Wilt
et al., 2009), focus in recent years has shifted from single-cell to population-level analyses where
the goal is to extract these variables using a variety of statistical (Yu et al., [2008a; |Cunningham &
Yul [2014; |[Kobak et al.|[2016;|Zhao & Park, 2017 Williams et al.;, 2020) and computational (Van der
Maaten & Hinton, 2008}, [Pandarinath et al., |2018; [Mackevicius et al., 2019) methods, ultimately
providing deeper insight into the computations embodied by neural circuits.

This paradigm shift is particularly pertinent in the context of the mammalian spatial memory sys-
tem where Nobel-prize winning discoveries have identified cells whose neural activity depends on
spatially-relevant behavioural variables such as position (O’Keefe & Dostrovskyl 1971} |O’Keefe]
1978} [Hafting et al., 2005} Doeller et al., 20105 Moser et al.,|2015), heading direction (Taube et al.,
1990), speed (McNaughton et al.l |1983) and distance to environmental boundaries (Lever et al.,
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Figure 1: Schematic of the SIMPL algorithm. (a) A latent variable model for spiking data (f;(x),x(t)) is
optimized by iterating a two-step procedure closely related to the expectation-maximization (EM,
algorithm: First, tuning curves are fitted to an initial estimate of the latent variable (the “M-step”),
which are then used to redecode the latent variable (the “E-step”). (b) SIMPL fits tuning curves using kernel
density estimation (KDE) with a Gaussian kernel (top) and decodes the latent variables by Kalman-smoothing
maximum likelihood estimates. Measured behaviour (c) is used to initialize the algorithm as it is often closely
related to the true generative latent variable of interest (d).

2009)/objects (Hgydal et al, [2019)in a highly structured manner. These discoveries include place
cells (O'Keefe & Dostrovskyl, [1971) and grid cells (Hafting et al.l 2005) which are widely held to
constitute the brain’s “cognitive map” (Tolman| [1948}; |(O’Keefel |1978)). Characterizing neural ac-
tivity in terms of behaviour has been, and remains, a cornerstone practice in the field; however, the
core assumption supporting it — that the latent variable encoded by neural activity is the behavioural
variable — is increasingly being called into question (Sanders et al.} 2015} [Whittington et al.} 2020}

George et al.| 2024b).

The brain is not a passive observer of the world. Active internal processing like planning a future
route (Spiers & Maguire}, [2006) or recalling past positions 2010) as well as observed
phenomena such as replay (Carr et al, 2011), theta sweeps (Maurer et al., 2006), and predictive
coding (Muller & Kubiel [1989; [Mehta et al., [1997; [Stachenfeld et al., [2017) will cause encoded
variables to deviate from behaviour. Additionally, the brain is not a perfect observer; irreducible
uncertainty due to limited, noisy or ambiguous sensory data can lead to similar encoding discrep-
ancies. Experimental inaccuracies, like measuring the wrong behaviour or measuring behaviour
poorly, can contribute further. These hypotheses are supported by decoding analyses which show
that “behaviour” decoded from behaviourally-fitted tuning curves rarely achieves perfect perfor-
mance (Wilson & McNaughton| [1993)) as well as the observation that neurons show high variability
under identical behavioural conditions (Fenton & Muller, [1998} [Low et al [2018)). All combined,
these facts hint at a much richer and more complex internal code. When this complexity is not
accounted for (as is typically the case), neural data may be misinterpreted and tuning curves will
be blurred or distorted relative to their true form, weakening the validity of the conclusions drawn
from them. Nonetheless, the observation that behaviour is still a close-but-imperfect proxy for the
true latent variable motivates the search for techniques to refine behaviourally fitted tuning curves as
opposed to starting from scratch. Current methods either fail to exploit behaviour
2017), don’t scale to large neural data sets (Wu et al.l [2017), are computationally expen-
sive to train (Smith & Brown| [2003} [Pandarinath et al.,[2018) or are limited in the expressiveness of
their tuning curve models (Macke et al., 2011} |Gao et al., [2016; [Archer et all,[2014).




Under review

Contributions Here we introduce SIMPL (Scalable Iterative Maximization of Population-coded
Latents), a straightforward yet effective enhancement to the current paradigm. Our approach fits
tuning curves to observed behaviour and iteratively refines these through a two-step process: first
we decode the latent variable from the previously estimated tuning curves; then, we refit the curves
based on these decoded latents. SIMPL imposes minimal constraints on the structure of the tuning
curves, scales well to large neural datasets and does not rely on neural network function approxi-
mators which can be hard to interpret and expensive to train. We theoretically analyse SIMPL and
establish formal connections to Expectation-Maximisation (EM, Dempster et al.|[1977) for a simple
but flexible class of generative models. By exploiting behaviour as an initialization, SIMPL con-
verges fast and alleviates well known issues to do with local minima and identifiability (Hyvarinen
& Pajunen, [1999; [Locatello et al., 2019). This allows it to reliably return refined tuning curves
and latent variables which remain close to, but improve upon, their behavioural analogues readily
admitting direct comparison.

We first validate and analyse the properties of SIMPL on synthetic datasets that closely match those
analysed by experimentalists: a discrete 2AFC decision-making task and a continuous grid cells
dataset. Finally, we apply SIMPL to rodent electrophysiological hippocampal data|Tanni et al.|(2022)
and show it modifies the latent space in an incremental but significant way. The optimized tuning
curves explain the data better than their behavioural counterparts and contain sharper, more numer-
ous place fields which allow for a reinterpretation of previous experimental results, motivating the
use of SIMPL in future studies. SIMPL has only two hyperparameters and can be run on quickly
on large neural datasets O(1 hour, 200 neurons, 10° spikes)~ O(1 min) without requiring a GPU.
It outperforms a popular modern alternative technique based on neural networks (Schneider et al.,
2023) and is over 30 faster. This make it a practical alternative to existing tools particularly of in-
terest to navigational communities where data is abundant and behavioural variables are beneficial.
We provide an open-source JAX-optimised (Bradbury et al., 2018) implementation of our code{ﬂ

2 METHOD

Here we provide a high-level description of the SIMPL algorithm. Comprehensive details, as well as
a theoretical analysis linking SIMPL formally to expectation-maximization of a class of generative
models, is provided in the Appendix.

Algorithm 1 SIMPL: An algorithm for optimizing tuning curves and latents from behaviour

1: s € NVxT > Spike counts
2: x(0) ¢ RPXT > Initial latent estimate
3: procedure SIMPL(s, x(?)

4: fore < Oto E' do > Loop for E iterations
5: £(¢) « FitTuningCurves(x(*, s) > The “M-step”
6: x(¢+t1) « DecodeLatent(f(¢), s) > The “E-step”
7: end for

8:  return x(F+D £(F) > The optimised latent and tuning curves
9: end procedure

2.1 THE MODEL

SIMPL models spike trains of the form s := (slt);zig , where s;; represents the number of spikes

emitted by neuron ¢ between time ¢ - At and (¢ + 1) - At, for some time discretization interval At.
We denote s; := (s1¢,. .., Sn¢) the vector of spike counts emitted by all neurons in the t-th time bin.
SIMPL posits that such spike trains s are modulated by a latent, continuously-valued, time-evolving
variable x = (xt)t:L___,T e RP through the following random process:

sit | Xt~ Poisson(fi(x+))
Xee1 | Xe ~ N(xq, (v A1),

!Code and a demo can be found at: https://anonymous.4open.science/r/simpl/README.
md
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and xg ~ N(0,00l). Here, v is some constant velocity hyperparameter. The resulting prior dis-
tribution of x, (called px) enforces temporal smoothness in the trajectories. The latent variable x;
determines the instantaneous firing rate of each neuron via its intensity function f; (hereon called
its tuning curve, collectively denoted f), which is unknown a priori, and which SIMPL will esti-
mate. Moreover, we make the common assumption that all neurons are conditionally independent
given x¢, i.e. p(s¢|x:) = [[¥, p(sit|x¢). Finally, we assume the latent variable x evolves only
according to its previous state (it is Markovian), a common assumption in the neuroscience litera-
ture (see, e.g. |George et al.[[2021)). This model has been previously studied in the literature (Smith
& Brown, 2003; Macke et al.l |2011), albeit using restrictive intensity function models, something
which SIMPL avoids as discussed below.

2.2 THE SIMPL ALGORITHM

Outline We now seek an estimate of the true, unknown latent trajectory x* and tuning curves f* that
led to some observed spike train, s. SIMPL does so by iterating a two-step procedure closely related
to the expectation-maximisation (EM) algorithm: first, tuning curves are fitted to an initial estimate
of the latent variable (the “M-step”), which are then used to decode the latent variable (the “E-step”).
This procedure is then repeated using the new latent trajectory, and so on until convergence.

The M-step In the M-step of the e-th iteration (or “epoch”) given the current latent trajectory esti-
mate x(¢), SIMPL fits intensity functions using kernel density estimation (KDE):

_ Zthl sit k(x, Xie)) __ #spikes atx
O kxxy  #visitstox (1)

£19x) -

undefined outside x(*)
The use of a kernel allows to extrapolate the intuitive estimate on the right of Equation|I]to locations
 not present in the trajectory x(¢). In practice, we use a Gaussian kernel with bandwidth o.

The E-step In the E (or decoding) step, SIMPL produces a new estimate x(°*1) of the latent tra-
jectory by smoothing across time the (non-smooth) maximum likelihood estimate of x, given s and
£(¢), using py, the prior distribution on x. In particular, a theoretical argument detailed in the ap-
pendix allows SIMPL to employ Kalman Smoothing, resulting in a principled and efficient decoding
procedure, which we summarize below. The intuition is that although spike counts are not Gaussian,
with a sufficient number of neurons the maximum likelihood estimate is Gaussian around x and so
can be Kalman smoothed:

%) = arg max log p(s|x, £©))

2

X§e+l) . §e+1)

= KalmanSmooth(X s Px)

Behavioural initialization Spike trains often come alongside behavioural recordings which are
thought to be closely related to the latent variable x. SIMPL leverages this by setting x(), the
initial decoded latent trajectory, to measured behaviour. We posit that such behavioural initializa-
tion will place the first iterate of SIMPL in the vicinity of the true trajectory and tuning curves. This,
in turn, faciliates the search for a good model, and favours the true latent and tuning curves (x*, f*)
over alternative pairs (¢(x*),f* o $~1) whose latent space is warped by some invertible map ¢,
and which would explain the data equally well. Through ablation studies, we confirm the beneficial
effects of this behavior-informed initialization in the experiments section (see Fig. [3|and ). To re-
inforce this incentive and further improve numerical stability, we also transform the decoded latent
trajectory at each iteration using an linear map which maximally aligns it with behavior.

All in all, SIMPL is interpretable and closely matches common practice in neuroscience; moreover,
it can be formally related to a generalized version of the EM-algorithm, for which theoretical guar-
antees may be obtained under suitable assumptions. We describe in detail the theoretical arguments
justifying the validity of SIMPL as well as its connection to EM in the appendix.

3 RELATED WORK

Probabilistic inference in spike trains modulated by latent variables has been a major topic in neural
data analysis for decades — see, e.g. |Yu et al.|(2005;|2006; |2008bga); [Macke et al.[(2011);/Mangion
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et al.| (2011)); [Park et al.| (2015); |Gao et al.| (2016); [Duncker et al.| (2019); [Zhou & Wei| (2020);
Schneider et al.| (2023). Closest to SIMPL are the works of |Smith & Brown| (2003)); Macke et al.
(2011), which both perform approximate EM in a hidden markov model with Poisson emissions and
a Gaussian random walk prior on x. Both methods use a simplistic parametric linear—exponential
model of intensity functions; such parametric models are not flexible enough to capture neurons with
complex tuning properties such as place cells and grid cells. The (approximate) E-step of [Macke
et al.|(2011) employs a global Laplace approximation, leveraging the concavity of the log-posterior
of such models to compute the maximum a posteriori (MAP) of the entire trajectory; however, this
concavity is a consequence of the intensity function model, and does not hold in our case. On the
other hand, the approximate E-step of |Smith & Brown| (2003) uses a /local Laplace approximation
to obtain the MAP. However, their algorithm requires running optimization algorithms sequentially,
which can be computationally expensive. In contrast, the MLE optimization problems computed in
SIMPL’s E-step can be solved in parallel across time points, making SIMPL more scalable.

Markovian models assume that the future trajectory of an agent is only influenced by its current state,
not its past ones. This assumption may not accurately capture certain brain patterns with long range
time dependencies. To address such issues, a series of methods, pioneered by [Yu et al.|(2008a), and
refined in Wu et al.| (2017); |[Zhao & Park| (2017); Jensen et al.| (2020)) instead consider spike train
models using a Gaussian Process prior on x, which only enforces smoothness in the latent dynamics.
However, inference using Gaussian processes is computationally expensive in the number of time
points, requiring additional approximations to remain tractable thus these techniques are typically
used for very short neural datasets unlike the O(hours)-long datasets we consider here.

To model complex non-linear, but Markovian, transition structures and alleviate some time scaling
issues of GP methods, LFADS (Pandarinath et al., 2018)) uses a Recurrent Neural Network to model
latent dynamics. While LFADS is capable of modelling a wide range of firing patterns, its linear—
exponential intensity function model will, again, not capture the complex tuning properties of grid
cells and place cells. Moreover, LFADS comes with expensive training overheads and hyperparam-
eters which are reportedly hard to tune (Keshtkaran et al.l 2022)). Pi-VAE (Zhou & Weil 2020) uses
a Variational Autoencoder (Kingma & Welling, 2014) to learn both a generative model and a latent
decoding network for latent-modulated spike events. Finally, CEBRA (Schneider et al.||2023)) is a
neural network based technique that learns a deterministic encoder mapping spikes to latents using
Noise—Contrastive Estimation. CEBRA focuses on decoding and does not natively learn intensity
functions, which are of primary interest in our setting.

4 RESULTS

4.1 ToY MODEL OF A DISCRETE LATENT VARIABLE TASK

Before testing SIMPL on a large temporally continuous dataset we constructed a smaller dataset akin
to a discrete two-alternative forced choice task (2AFC) (Fig. [2) — a widely studied decision—-making
paradigm (Platt & Glimcher, [1999; Bogacz et al., 2006; |[Znamenskiy & Zador} |2013; |Lieder et al.|
2019). The true latent states x; € {0, 1} are binary and have no temporal structure (here subscript
t indexes trials not time), analagous to a series of random “left” or “right” choices (Fig. 2p). This
latent state is stochastically encoded by a population of neurons with random tuning curves giving
the Bernoulli emission probabilities under each latent state:

wron [ fio~U0,1) x=0,
f(x)_{fﬂNU(OJ) x =1,

x; ~ Bernoulli(0.5) and s;|x; ~ Bernoulli(f/(x})).

Data is then sampled for 7' = 50 trials and N = 15 neurons as shown in Fig. [2] Initial conditions,
xgo), are generated from the true latent by randomly resampling a fraction of trials p = 0.5 (Fig.
[2b). This partial resample represents an initial discrepancy between the behavioural measurement
and the true internal state of the agent. We perform inference on this dataset using a reduced version
of the model (SIMPL-R). In the M-step, tuning curves were simple fitted by calculating the average
activity of a neuron across each latent condition (e.g. f,t-(e)(x) =2, sité(xge), x)/ >, 5(x§e), X),
conceptually similar to KDE). For the E-step, each latent was the decoded according to the max-
imum likelihood estimate under the observed spikes and tuning curve estimates from the previous
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Figure 2: A two-alternative forced choice task (2AFC) toy-model. (a) Data generation: Spikes are sampled
from a simple generative model. For each of T=50 independent trials a random binary latent — analogous
to a “left” or “right” choice — is encoded by a population of N=15 neurons with randomly initialized tuning
curves. (b) Model performance: Starting from a noisy estimate (yellow) of the true latent (black) where a
fraction p = 0.5 of trials are resampled, SIMPL-R recovers the true latent variables (green) with high accuracy.
(c) Left: Correlation between x(®) and x*. Middle: Log-likelihood, log p(s|x(®, £(*)). Righs: Final correlation
between x® and x* as a function of initialization noise p. Violin plots show distributions over 1000 randomly
seeded datasets, dotted lines show ceiling performance of a perfectly initialized model x© =x*) () Tuning
curves.

epoch: X§e+1) = argmaxy y_, log p(si|x, fi(e)) (there is no time dependence between latents, thus

no Kalman smoothing). This process was repeated for 5 epochs and, with high reliability, converged
on the true latents after approximately two (Fig. 2k & d, distributions show repeat for 1000 randomly
seeded datasets, dotted lines show ceiling performance on a model perfectly initialized with noise-
less x(9) = x*). We repeated this experiment for various values of p: latent recovery was almost
perfect when p was small (i.e. when the initial conditions were close to the true latent), dropping off
as p approached 1. At p = 1 when the conditions were completely random, the model was biased to
recover a latent space that is either perfectly correlated or perfectly anti-correlated (“left” <» “right”)
with the true latent (Fig. 2k, right), a valid isomorphism discussed more in the upcoming section.

4.2 CONTINUOUS SYNTHETIC DATA: 2D GRID CELLS

Next we tested SIMPL on a realistic navigational task by generating a large artificial dataset of spikes
from a population of N = 225 2D grid cells — a type of neuron commonly found in the medial
entorhinal cortex which activate on the vertices of a regular hexagonal grid (Hafting et al.| [2005]))
— in a 1 m square environment. Grid cell tuning curves, f*, were modelled as the thresholded
sum of three planar waves at 0°, 60° and 120° to some offset direction (a commonly used model
within the computational neuroscience literature (George et al., [2024a))) and, as observed in the
brain, cells were arranged into three discrete modules, 75 cells per modules, of increasing grid scale
from 0.3-0.8 m (Fig. 3k). Each cell had a maximum firing rate of 10 Hz. A latent trajectory, x*, was
then generated by simulating an agent moving around the environment for 1 hour under a smooth
continuous random motion model which had been fitted to rodent foraging behaviour. Data was
sampled at a rate of 10 Hz giving a total of 7" = 36, 000 time bins (~ 800,000 spikes). All data was
generated using the Rat InABox (George et al., 2024a)).

x* ~ Smooth-continuous-random-walk and s;;|x} ~ Poi(f7¢(x})) (3)

The initial latent trajectory, x(°), was generated by adding smooth Gaussian noise to the latent x such
that, on average, the true latent and initial condition differed by 20 cm (Fig. [Bh, top panel). This
discrepancy, potentially representing the agents internal uncertainty in their position, was sufficient
to obscure almost all structure from the grid cell tuning curves f(°)(x) for all but the largest grid
scales (Fig. b, top).

To assess performance we partition the spike data matrix, s, into testing and training sets, Stest, Strain®
inference is performed exclusively using data in the training set, and we then track the log-likelihood

of data in both sets (Fig. , left), e.g. £) = S reat D (i)t logp(sit|xge), f-(e)). This partition-

K3
ing has to be done with care; entire time intervals cannot be withheld for testing without impairing
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Figure 3: Results on a synthetic 2D grid cell dataset. An artificial agent locomotes a 1 m square environment
for 1 hour (At = 0.1 s). Spikes are generated from N=225 artificial grid cells. (a) Estimated latent trajectories
shown for epochs 0, 1 and 10. x and y positions are denoted by dotted and dashed lines respectively. Initial
conditions are generated from the true latent (black) by the addition of smooth continuous Gaussian noise. (b)
Tuning curve estimates for 5 examplar grid cells at epochs 0, 1 and 10. (¢) Ground truth tuning curves. (d)
Performance metrics: Left: log-likelihood of the train and test spikes (averaged per time step, dotted line shows
ceiling performance on a model initialized with the true latent). Middle-left: Euclidean distance between the
true and estimated latent trajectories (averaged per time step). Middle-right: Epoch-to-epoch change in the
tuning curves. Right: Cell spatial information. Violin plots, where shown, display distributions across all 225
neurons.

the model’s ability to infer the latent over this period. Likewise, entire neurons cannot be withheld
without impairing the model’s capacity to estimate their tuning curves. Instead, we adopt a speck-
led train-test mask previously used in latent variable modelling set-ups (Williams et al.,|2020) which
withholds for testing extended chunks of time bins arranged in an irregular “speckled” pattern across
the data matrix (totalling 10% of the data) without ever removing all neurons for a given time bin
or all time bins for a given neuron. We also calculate the Euclidean distance between the true and
latent trajectory (Fig. [3d, middle-left), 7=' 3", [|x(®) () — x]|2, the epoch-to-epoch change in the
tuning curves (Fig. [3d, middle-right) and the entropy (hereon called “spatial info”, Fig. [3d, right) of
the normalized tuning curves as a measure of how spatially informative they are.

SIMPL was then run for 10 epochs (total compute time 39.8 CPU-secs). The true latent trajectory
and receptive fields were recovered almost perfectly and the log-likelihood of both train and test
spikes rapidly approached the ceiling performance with only slight overfitting.

Influence of behavioural initializations on performance Latent variable models trained with
EM can experience two issues that usually complicate the scientific interpretability of their results.
First, they may not converge to a good model of the data; second, even if they do, the recovered
latent spaces and intensity functions (f(¢), x(¢)) may differ from the true ones (f*,x*) by some
invertible “warp” ¢ that does not affect the overall goodness of fit of the model. While SIMPL is
a latent variable model, we show that behavioural initialization drastically minimizes the severity
of these issues. To do so, we first assess the absolute goodness—of—fit of SIMPL by computing
the correlation between the estimated instantaneous firing rates f <€>(:c§e)) (a quantity invariant to
warping) and the true ones. Our analysis shows that SIMPL converges to a highly accurate model
(r=0.98) under behavioural initialization, but to a less accurate (but still quite accurate) one (r =
0.87) when initialized with a random latent trajectory which is uncorrelated with behavior. Second,
we estimate, quantify and visualize the warp map ¢ between SIMPL’s estimates (f(¢), x(¢)) and the
ground truth (f*,x*). We obtain this estimate by finding a mapping from the discovered latent
space to the true latent space which minimizes the L2 difference between the tuning curves (¢(x) =
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arg miny || £*(y) — £(¢)(x)||2). We then quantify the “warpness” of this mapping by calculating the
average distance between x and ¢(x) across the environment, normalized by its characteristic length
scale (1 m). This warp distance should be 0 for total un-warped models and O(1) for heavy warps.
We find that in addition to perfectly fitting the data, the solution found by SIMPL under behavioural
initialization is minimally warped (warp dist = 0.050). In contrast, the good (but imperfect) solution
found by SIMPL under random initialization is heavily warped (warp dist. = 0.498) in a fragmented
manner. These results are shown in Fig. @ and strongly motivate the use of behavioural initializations
in latent variable models as an effective mean to encourage convergence towards latent spaces which
are both accurate and un-warped with respect to the ground truth.

(a) ground truth (b) initialised: noisy ground truth (fig. 3) (c) randomly

exemplar
tuning .

curve

warp reference
maps

).
2.3

Figure 4: Latent manifold analysis: (Top) Examplar tuning curve in the ground truth latent space (a), the
latent space discovered by behaviourally-initialised-SIMPL after 0, 1 and 10 epochs (b) and the latent space
discovered by SIMPL initialized with a random latent trajectory (c¢). Inset scatter plots show the true and
predicted firing rates of all neurons across all times as well as their correlation values (“accurate” models have
higher correlations). (Bottom) Visualizations of the warp functions mapping each latent space to the “closest”
location in ground truth as measured by the distance between the tuning curves population vectors.

warp distance

Comparison to CEBRA We compared
SIMPL to a popular latent variable extraction ©
technique called CEBRA (Schneider et al.) o '\A iy true va\w“\ CPU-compute
2023). Unline SIMPL which uses behaviour ‘@ My / rSIMF’L

as an initialisation, CEBRA learns latent time [min] 10 [mins] 25
embedding directly from spikes by training a

deep neural network to minimise a contrastive

loss function with behaviour as the labels.

CEBRA @ latent error
SIMPL
We trained CEBRA on our synthetic grid cell [cm]

dat.a. using  out-of-the-box hyperparameter Figure 5: Comparison between SIMPL and CEBRA.
training for the default 10000 iterations. After

training we aligned the latent to behaviour and

observed that CEBRA found a latent trajectory (Fig. [5h, blue) very close to the true latent (Fig. [Bh,
black) much like SIMPL. CEBRA’s latent embedding was noisier than SIMPL (a likely consequence
of the explicit smoothing we perform) and had significantly larger final error (9.2 cm vs 4.0 cm).
Since CEBRA doesn’t explicitly learn a generative model in order to visualise tuning curves we
we applied our standard KDE fitting procedure (an M-step) to the CEBRA latents. The resulting
grid cells but remained blurry relative to the ground truth (but were better than behaviour), in
comparison to SIMPL, which produced sharp, well-defined grid fields (Fig. [5p) close to the ground
truth. CEBRA took just over 23 minutes to train on a consumer laptop with 8-CPUs compared to
just under 40 seconds for SIMPL on the same machine.

2with the exception that we turned ‘off> normalisation so outputs weren’t normalised onto a sphere
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4.3 HIPPOCAMPAL PLACE CELL DATA

Finally, we test SIMPL on a neural dataset from N = 226 hippocampal neurons recorded from a
rat as it foraged in a large 3.5 m by 2.5 m environment for 2 hours (full details can be found in
Tanni et al.|[2022)). The data was binned at 5 Hz (dt = 0.2s giving T' = 36, 000 data samples, total
~ 700,000 spikes). Place cells are a type of neuron commonly found in the hippocampus which
activate when an animal is in a specific location in space (its “place field”) and, like grid cells,
are thought to be a key component of the brain’s navigational system (O’Keefe| [1978). In large
environments place cells are known to exhibit tuning curves with multiple place fields (Park et al.,
2017).
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Figure 6: Results on a hippocampal place cell dataset collected by Tanni et al.|(2022). (a) Exemplar tuning
curves before and after optimization. Automatically identified place field boundaries shown in white. (b)
Log-likelihood of test and train spikes. Equivalent results for a control model — fitted with spikes resampled
from the behavioural place fields, Sconwol ~ p(~\x(0), f <0)) — shown in grey. (c) Place field (before, after,
control-after) analysis. Violin plots show the distributions over all place fields / place cells. (d) The final latent
trajectory estimated from SIMPL (green) overlaid on top of the behaviour (used as initial conditions) (yellow).
x and y coordinates shown with dotted and dashed lines respectively. (e) Behavioural discrepancy map: the
average discrepancy ngo) — xElO) |2 as a function of the optimized latent x**). Overlaid is a snippet of the
behavioural vs optimized true latent trajectory. (f) Median place field sizes, and distributions, as a function of
the distance to the nearest.

We initialized SIMPL using the measured position of the animal and optimized for 10 epochs. The
log-likelihood of test and train spikes increased, Fig. [6p, converging after approximately 4 epochs
(compute time 41.2 CPU-secs). Place fields were automatically identified by thresholding the ac-
tivity of each neuron at 1 Hz and identifying contiguous regions of activity with a peak firing rate
above 2 Hz and a total area less than half that of the full environment, similar to previous work
(Tanni et al., 2022)).

Tuning curves were visibly sharper after optimization, Fig. [6p; diffuse place fields shrunk (e.g.
see the third exemplar tuning curve) or split into multiple, smaller fields (second exemplar) (Fig.
[6p). Occasionally, new place fields appeared (fourth exemplar) or multiple place fields merged into
a single larger field (fifth exemplar). Statistically, tuning curves had significantly more individual
place fields (mean 1.14—1.41 per cell, p = 0.0035 Mann Whitney U tests), substantially higher
maximum firing rates (median 4.2—6.1 Hz, p = 9.8 x 10~ ") and were more spatially informative
(p = 0.038). Individual place fields were substantially smaller (median 0.59—0.44 m?) and rounder
(median 0.63—0.68, p = 0.0037). Notably only place cells — defined as cells with at least one
place field — showed significant changes in their tuning curves, non-place cells were statistically
unaffected (data not shown).

To ensure that these changes were not an artefact of the SIMPL algorithm we generated a con-
trol dataset by resampling spikes from the behaviour-fitted tuning curves, sconror ~ p(-|x(?), £(0)).
Control spikes thus had very similar temporal statistics and identical tuning curves to those in the
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original dataset but, crucially, were generated from a known ground truth model exactly equal to the
initialization. Thus, any changes to the tuning curves under SIMPL optimization can be considered
artefactual and not fundamental to the underlying neural data. No significant effect of optimization
on the control data (except for a slight increase in field area) was observed and all measured effects —
though statistically insignificant — pointed in the opposite direction to those observed in the real data
(except for roundness) (Fig. [6c). This control provides strong evidence that the changes observed in
the real data are genuine and reflect the true nature of neural tuning curves in the brain.

After optimization the latent trajectory x(1°) remained highly correlated with the behaviour (R? =
0.86, fig. [6d) occasionally diverging for short period as the latent “jumped” to and from a new
location, as if the animal was mentally teleporting itself (one such “jump” is visualized in Fig.
[6e). The close correspondence between the optimized latent and the behaviour allows us to directly
compare when, and where, they diverge. We calculated the discrepancy between the optimized latent
and the behaviour at each time point, ||x§0) - xglo) |l2, and visualized this as a heat map overlaid
onto the latent space (Fig. [6g). Discrepancy was minimal around the edges of the environment and
peaked near the centre, consistent with the hypothesis that sensory input is less reliable in the centre
of the environment (where there are fewer visual and tactile cues) to guide self-localisation resulting
in a larger average discrepancy between the optimized latent and the behaviour.

(Tanni et al., 2022)) found that place field size increased with distance from the nearest wall in
the environment. Our observation — that latent-behaviour discrepancy is highest in the centre of the
environment — suggests a possible explanation: place fields in the centre of the environment appear
larger because they are distorted by the discrepancy which is asymmetric across the environment.
To test this we binned place fields according to their distance to the nearest wall (measured with
respect to the place fields centre of mass) and plotted the median field size against distance (Fig. [6f).
Optimized place fields, much like behavioural place fields, were the smallest near the walls and grew
with distance (replicating (Tanni et al., 2022))), but this correspondence broke down around ~ 0.5
m after which the optimized size distribution flattened off, something not observed in the control.
A majority of the shrink in place field size thus came from larger place fields near the centre of the
environment not the smaller ones near the walls. This result suggests that a substantial fraction of
the increased size of place fields away from walls is not a fundamental feature of the neural tuning
curves themselves but can be attributed to a behaviour-induced distortion in the tuning curves, an
artefact which can be ‘undone’ by SIMPL.

5 DISCUSSION

We introduced SIMPL, a tool for optimizing tuning curves and latent trajectories using a technique
which refines estimates obtained from behaviour. It hinges on two well-established sub-routines —
fitting and decoding — which are widely used by both experimentalists and theorists for analysing
neural data. By presenting SIMPL as an iterative application of these techniques, we aim to make
latent variable modelling more accessible to the neuroscience community.

Furthermore, we see SIMPL as a specific instance of a broader class of latent optimization algo-
rithms. In principle any arbitrary curve fitting procedure and any arbitrary decoder could be coupled
into a candidate algorithm for optimizing latents from neural data. Our specific design choices,
while attractive due to their conceptual simplicity, will also come with limitations. For example, we
predict KDE won’t scale well to very high dimensional latent spaces (Gyorfi et al.,|2006). In these
instances user could consider substituting this component with a parametric model such as neural
network which are known to perform better in high dimensions (Bach,|2017), potentially at the cost
of training time.

Our synthetic analysis focussed on settings where behaviour and the true latent differed only in
an unbiased manner. It would be interesting to determine if SIMPL ’s strong performance extends
to more complex perturbations. In the brain, asymmetric perturbations are common; for instance,
during theta sweeps (Maurer et al., 2006)), the encoded latent moves away from the agent. This
forward-biased discrepancy could theoretically induce a backward-biased skew in behavioral place
fields, even if the true tuning curves remain unskewed. If this is the case, latent dynamics — and
tools like SIMPL for extracting them — could help reinterpret the predictive nature of place field
tuning curves Stachenfeld et al.[|(2017); |Fang et al.|(2023)); Bono et al.| (2023); |George et al.| (2023)),
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similar to how latent optimization reduced the asymmetry in place field sizes further from walls

(Fig. [6).
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Supplementary Material for “SIMPL: Scalable and hassle-free
optimization of neural representations from behaviour”

A  ADDITIONAL METHOD DETAILS

A.1 BACKGROUND: EXPECTATION MAXIMIZATION

Expectation Maximization (EM, |Dempster et al.[|1977) is a widely used paradigm to perform statis-
tical estimation in latent variable models. The goal of EM is to maximize the Free Energy, a lower
bound on the log-likelihood log p(s; f) of the data, given by (following the notations of Section:

F(f,q) = Eqgxllogp(x,s; )] — Eg(x) [log ¢(x)] < logp(s; f),

where ¢ is some probability distribution on the latent variable x. Importantly, for a given set of
intensity functions f, F is maximized at ¢* = p(x|s; f), i.e. the posterior distribution of the
latent variable given the s and f. Moreover, for a fixed ¢, the only f-dependent term in F is
Eq(x)[log p(x,s; f)]. To maximize F(f,q), EM produces a sequence (f[k])kzo of parameters f*!

by invoking, at each step & and given f*~, two well known subroutines:

e E-step: Define ¢/l := p(x|s; fI*~1); compute f — E, i [logp(x,s; f)]
e M-step: Compute (¥l := argmax; F(f, ¢/¥) = arg max; B, [log p(x,s; f)]

with the property that log p(s; f¥1) > logp(s; fI*~11) for all k, thus grounding the use of EM
to maximize the likelihood of the data. As the E-step computes specific posterior expectations, a
tractable E-step often implies the ability to compute in particular posterior means and variances, the
most valuable expectations in the context of decoding the latent variable from behaviour. Thus, in
the context of neural data, EM offers a framework to both estimate intensity functions via maximum
likelihood, and to decode the variable encoded by the neurons.

A.2 SIMPL AS AN APPROXIMATE EM ALGORITHM

Impossibility of Exact EM for Gaussian-Modulated Poisson Processes The E-step of the EM
algorithm requires computing a function defined as an expectation w.r.t p(x|s; f [k*”). In the case
of Hidden Markov Models, such expectations are intractable to compute in closed form, unless the
latent variable x is discrete, or both the transition and the emission probabilities are Gaussian (with
mean and variance depending linearly on x, |Rauch et al.|[1965)). In particular, exact inference in the
model described in Section [2.1]is impossible. In order to perform statistical inference for our spike
train model, SIMPL runs an approximation of Exact EM, which we detail below.

MLE-backed Approximate E-Step Instead of ¢l¥l = p(x|s; f(*~1), SIMPL computes an ap-
proximation §*! to ¢!*!, allowing for both statistical estimation and uncertainty-aware trajectory
decoding. As a first step towards obtaining g*!, SIMPL first performs Maximum Likelihood Esti-
mation (MLE) on the latent trajectory x. Instead of returning a posterior on x, MLE returns a point
estimate of the frue trajectory that led to the observed spike train s. In particular, MLE does not use
the prior knowledge encoded by p(x). The MLE X of x given s is given by:

T N
s k-1 ' -1
% = argmaxlog p(slx; f* 1) = argmax ) Y " logp(silx.; f471)
t=1 i=1
N
= X; = arg maxz log p(st|x ; fF=1).
"
The second equality follows from the conditional independence structure of the HMM. This maxi-
mization problem can be solved independently for each ¢, yielding the formula for X; given by the
third equality. As a function of s, the MLE X is itself a random variable. In the many neurons limit,
under certain regularity assumption, converges to a Gaussian, a fact known as asymptotic normality.
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We restate a formal statement of this result in the case of independent, but non identically distributed
observations[ﬂoriginally established in|Bradley & Gart|(1962)), and reformulated using the notations
of the model at hand. For simplicity, we will consider the case where only P distinct intensity
functions f1, ..., fp exist, although versions of this result exist without this assumption.

Theorem A.1 (Asymptotic Normality of the MLE ). Let x; € RY. Lets},...,sY be independent
random variables with probability densities p(si|xy; fy(;)), where t(i) € 1,..., P is the index of the
intensity function f,(;y that generated the spike train st. Forp€ 1,..., P, denote ny the number of
times the intensity function f,, appeared in the sequence f ;). Assume that the MLE exists and it is
unique. Then, under mild regularity conditions, we have:

VN (R = x0) —— N(0,Z(x)7")

P
where T(x;) = ) ppEp(s,;s, ) Hess(log p(s¢|xy; fp)) is the Fisher Information matrix and N
p=1
means convergence in distribution, and we defined |1, == limpy _, o0 an

The asymptotic Gaussianity of the MLE in the many neurons limit suggests performing approximate
inference in a surrogate Hidden Markov Model, with the same transition probabilities p(x;+1|x:) as
the original ones, but where the observations s are replaced by the previously computed MLE X of
the latent variable. Leveraging Theorem [A.1]and the fact that Z(x;) ~ Z(X;) SIMPL approximates
the emission probabilities p(X;|x;) by the Gaussian distribution N'(x;, (NZ(X;))~!), treating the
covariance matrix as deterministic. The resulting HMM then takes the form of a Linear Gaussian
State Space Model, allowing SIMPL to compute the posterior p(x;|X) using Kalman Smoothing
(Rauch et al.,|1965). This posterior is then used as the approximation g*! to ¢/*! in S1MPL’s E-step.
Finally, F(f, é\[k]) is approximated by sampling from g*}, and computing the empirical average of
log p(x,s; f). Importantly, obtaining the MLE estimates X; can be obtained in parallel for all ¢; the
only sequential procedure remaining being the Kalman Smoothing step.

Spike Smoothing as an approximate M-Step In the M-step, one maximizes Ez) [log p(x,s; f)]
w.r.t to the intensity functions f. This step is often done by specifying a parametric model for f,
and then optimizing the parameters. However, if the true function cannot be accurately represented
by the model, the final procedure will suffer from a bias that does not vanish in the large sample
limit. While one could use a neural network (whose bias can be made arbitrarily small by increasing
the number of neurons), neural networks can be hard to interpret and expensive to train. Instead,
SIMPL uses a non-parametric approach that is both training-free and interpretable. To do so, SIMPL
samples from its approximate posterior X ~ g'*!, and computes a non-parametric estimate (Hodara
et al., 2018) of the intensity functions f; given by:

— ZZ:l Si k(lL’, it) )
Sy k(%)

Here, k : R? x RY —— R, is some kernel function. We propose an explanation of the above
formula as the generalization of an M-step: for a fixed gi*/, E,(s)gi¥ (x) log p(s,x; f) equals (up to

@) - )

a constant) minus the KL divergence between the “data” distribution E] p(s)q*!(x|s) and the model
p(s,x; f). Thus, an M-step can be understood as minimizing this KL divergence approximately, by
replacing the expectation over p(s) by an empirical average over the true data s, an approximation
which is asymptotically consistent in the large number of time-steps limit under suitable ergodicity
conditions (Billingsley, |1961). SIMPL relaxes this approximation further, replacing the expectation
over ¢*/(x|s) by a one-sample estimate of it through %. Moreover, it does not use the KL as a loss
function, but instead performs model fitting in a non-parametric manner. Under this procedure, the
existing guarantees regarding the EM algorithm do not hold — on the other hand, SIMPL’s M-step
precisely matches spike smoothing, a standard practice in neuroscience.

*The i.i.d case was established in |Fisher| (1925)
*We denote ¢” (z) by ¢"(z|s) to highlight the dependence between z and s.
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