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...In that Empire, the Art of Cartography attained such Perfection

that the map of a single Province occupied the entirety of a City, and

the map of the Empire, the entirety of a Province. In time, those

Unconscionable Maps no longer satisfied, and the Cartographers

Guilds struck a Map of the Empire whose size was that of the

Empire, and which coincided point for point with it. The following

Generations, who were not so fond of the Study of Cartography

as their Forebears had been, saw that that vast Map was Useless,

and not without some Pitilessness was it, that they delivered it up

to the Inclemencies of Sun and Winters. In the Deserts of the

West, still today, there are Tattered Ruins of that Map, inhabited by

Animals and by Beggars; in all the Land there is no other Relic of

the Disciplines of Geography.

— On Exactitude in Science, Jorge Luis Borges
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Abstract

This thesis explores how neural systems learn and use internal representations to

support flexible behaviour, focusing on the mammalian spatial memory system

and cognitive map. It introduces new computational tools and biologically

plausible models that link neural structure and dynamics to spatial cognition.

Foundational to this work is RatInABox, an open-source toolkit now widely

used for simulating realistic navigation and hippocampal activity. This platform

enables the rapid prototyping of models that jointly capture behavioural

trajectories and neural representations, including place and grid cells.

The first model leverages this toolkit to demonstrate a biologically plausible

mechanism for learning predictive representations via spike-timing dependent

plasticity and theta phase precession. This mechanism bridges the timescale gap

between behaviour and synaptic plasticity to enable fast and flexible learning.

A second study introduces a generative model of the hippocampal-

entorhinal loop that unifies path integration and mental simulation. It shows

how local Hebbian learning, scheduled by theta oscillations, can give rise to

ring attractor dynamics within a normative Helmholtz machine framework.

The final contribution is SIMPL, an efficient algorithm for latent variable

discovery from high-dimensional neural data. By recursively fitting latent

trajectories and tuning curves, SIMPL achieves state-of-the-art performance

while enhancing the interpretability and precision of neural representations.

Collectively, these contributions advance our understanding of how

biological systems learn and represent the world, and provide new models and

tools for research at the intersection of neuroscience and artificial intelligence.
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Chapter 0

Introduction

Intelligent agents, both biological and artificial, must learn to represent the

external world and themselves within it to support flexible behaviours, such

as navigation, planning, and decision-making. This thesis explores how neural

systems achieve these goals by learning and utilising internal representations.

My research addresses three fundamental questions: how neural systems

learn, what representations neural systems use, and how neural dynamics

and representations interact to enable flexible behaviour. By developing

computational models and a toolkit for constructing them, this work aims to

help reconcile biological observations with statistical and machine learning

frameworks for intelligent systems, providing novel interpretations for both.

0.1 The Mammalian Spatial Memory System:

A Foundational Model Domain
The mammalian spatial memory system, particularly the hippocampal forma-

tion, serves as the primary model domain for this thesis. The hippocampus,

a small c-shaped structure in the medial temporal lobe and the most studied

of all brain regions, is known to play a critical role in memory (Scoville et al.

1957) and spatial navigation (Tolman et al. 1930; O’Keefe et al. 1978; Morris

et al. 1982). Decades of research have illuminated a rich landscape of learning

phenomena (Bi et al. 1998; Carr et al. 2011; Bittner et al. 2017), architectures

(Bush et al. 2014), representations (Moser et al. 2017), and dynamics (Carr
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et al. 2011; Skaggs et al. 1996a; Buhry et al. 2011; Sanders et al. 2015) within

the hippocampal formation, making it an ideal testbed for understanding how

neural systems learn and represent information. The hippocampal formation

(here taken to include the entorhinal cortex, subiculum, and dentate gyrus)

is known to represent self-location through the activity of a rich diversity of

functional cell types including “place cells,” “grid cells,” and “boundary vector

cells” (Moser et al. 2008). Understanding how these neural components interact

to support sophisticated cognitive functions is a central focus of my research.

Despite extensive research, much about the hippocampal formation remains

unknown. By some measures, our high-level computational and algorithmic

understanding—for example, orthogonalising sensory inputs (Treves et al. 1994),

memory consolidation (Scoville et al. 1957), encoding self-location (O’Keefe et

al. 1978), and path integration via the grid code (McNaughton et al. 2006; Fuhs

et al. 2006)—has outpaced our knowledge of the biological mechanisms enabling

these functions. This thesis directly tackles this problem by investigating how

successful theoretical models might actually be implemented within the brain,

bridging the gap.

0.1.1 Spatial Navigation and Spatial Cognition
Moving around the world—finding food, avoiding predators, and navigating to

ecologically relevant locations—is a fundamental task for almost all animals

and a distinguishing feature of intelligent life. For nearly a century, available

evidence has suggested that animals build internal cognitive maps: systems

of neurons which describe (or “encode”) an animal’s environment and their

location within it. This idea was first proposed by Tolman et al. (1930) who

noticed that rats with prior experience of a maze could navigate to a subsequent

goal location faster than animals without. This suggests that navigation is not

merely a simple stimulus-response behaviour but involves learning a temporally-

sustained map of the world. Support for this hypothesis was further solidified

in 1948 (Tolman 1948) with the discovery that experienced rats could navigate

to the goal through nearly-optimal routes even when the previously learned
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path was blocked.

Whereas spatial navigation refers to the process of locating and locomoting

oneself through the environment, spatial cognition refers to a broader set of

cognitive functions that involve the representation and manipulation of spatial

information. Examples include remembering past locations (Wilson et al. 1994;

Nadel et al. 1997), planning future routes (Spiers et al. 2006; Pfeiffer et al.

2013), understanding spatial relationships between objects (Høydal et al. 2019),

integrating vestibular cues (Castillo et al. 1954), and simulating trajectories

(so-called “mind-travel” (Sanders et al. 2015)). These functions, as we will see,

place substantial constraints on how and what the mammalian spatial memory

system must learn.

0.1.2 Hippocampal representations form the basis of the

cognitive maps
The theoretical construct of the cognitive map found its first biological grounding

with the discovery of “place cells” in the hippocampus by O’Keefe et al. (1971).

These neurons exhibit location-specific firing, becoming active only when an

animal enters a particular region of its environment (the cell’s “place field”),

providing direct evidence that the hippocampus encodes an animal’s location.

Their discovery led to the influential theory that the hippocampus is the key

locus of the cognitive map.

Over three decades later, the discovery of “grid cells” in the medial

entorhinal cortex (mEC)—a primary input to the hippocampus—by Hafting

et al. (2005) added a crucial new dimension. Grid cells fire at multiple locations,

with their firing fields forming a periodic triangular lattice that tiles the entire

environment. This regular structure is thought to provide something closer to

a metric or a coordinate system for the spatial memory system—often likened

to the gridlines on a map—enabling path integration and measurement of

distances and vectors (McNaughton et al. 2006; Burak et al. 2009). Along

with place cells, their discovery kick-started a new wave of theoretical research

into what types of neural representations are optimal for spatial cognition and
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earned their discoverers a Nobel Prize.

While place and grid cells are the foundational building blocks of the

spatial map, a map designed for flexible navigation must encode more than

just an agent’s current location. It must also capture the relationships between

places and their value for goal-directed behaviour. The successor representation

(SR), a particular focus of Chapter 3, is a powerful theoretical framework that

addresses this need by positing that the hippocampus encodes not only the

animal’s current position but an expectation over its future positions (Dayan

1993; Stachenfeld et al. 2017). By bridging the principles of reinforcement

learning with the firing properties of hippocampal neurons, the SR framework

explains how these representations support not only localisation but also flexible

planning and decision-making.

The hippocampal formation is not limited to place and grid cells. A

diverse array of other cell types have been identified, including boundary

vector cells (O’Keefe et al. 1996; Lever et al. 2009), object vector cells (Høydal

et al. 2019), head direction cells (Taube et al. 1990), speed cells (Kropff et

al. 2015), time cells (Pastalkova et al. 2008), and more. These additional

representations contribute to a rich tapestry of spatial coding mechanisms that

support navigation and cognition. Whilst many theoretical models have been

developed to prospectively (O’Keefe et al. 1996) or retrospectively (Burgess

et al. 2007) explain the firing properties of these cells, the challenge remains to

unify these findings and understand how such diverse representations interact

to form a coherent cognitive map.

0.1.3 The role of learning and dynamics in hippocampal

function
The representations that form the cognitive map are not static; they are shaped

by experience and are constantly updated through the interplay of synaptic

plasticity and network dynamics. Learning in the hippocampus is classically

attributed to Hebbian-like mechanisms, such as long-term potentiation (LTP)

(Bliss et al. 1973), which strengthen the connections between neurons that
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fire together (Hebb 1949), as well as STDP, which adjusts synaptic weights

based on the relative timing of pre- and post-synaptic spikes (Markram et al.

1997; Bi et al. 1998). This allows for the rapid formation of place fields as an

animal explores a new environment (Bittner et al. 2017) and the association of

locations with salient events or rewards (Hollup et al. 2001).

Furthermore, hippocampal function is critically dependent on internally

generated neural dynamics, most notably theta oscillations (Green et al. 1954)

and sharp-wave ripples (SWRs) (Buzsáki et al. 1992). During active exploration,

the hippocampal local field potential (LFP) exhibits a prominent 4-12 Hz theta

oscillation, which is thought to coordinate neural activity to encode ongoing

experiences in real-time and is studied extensively in Chapter 4. The associated

phenomenon of “theta phase precession” (O’Keefe et al. 1993), where place

cells fire at progressively earlier phases of the theta cycle as an animal traverses

a place field, suggests a mechanism for encoding temporal sequences of events

within a single oscillatory cycle (Skaggs et al. 1996b) and is a focal mechanism

in Chapters 2 and 3.

In contrast, during periods of rest or quiescence, the hippocampus is

dominated by SWRs—brief, high-frequency bursts of activity. During SWRs,

the hippocampus “replays” sequences of place cell activity corresponding to past

(Wilson et al. 1994) or potential future (Pfeiffer et al. 2013) trajectories, but on

a heavily compressed timescale (Nádasdy et al. 1999). This replay is thought

to be crucial for memory consolidation and the transfer of information from

the hippocampus to neocortical regions (Marr 1971; Buzsáki 1989), allowing

for the integration of new experiences into long-term memory.

Of particular importance to this thesis is the fact that neural dynamics

and neural representations are rarely independent concepts. As we will see in

Chapter 5, neural dynamics can modify spiking in such a way that, unaccounted

for, blurs or distorts observed tuning curves. This has important implications

for how we interpret neural data and understand the underlying cognitive

processes. Furthermore, in Chapters 2 to 4, we will see how neural dynamics
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are not just critical for how spatial cognition is performed after learning, but

are also critical for learning itself.

0.1.4 Theoretical and Computational Models of Hip-

pocampal Function
To bridge the gap between biological observation and functional understanding,

the field—along with this thesis—relies heavily on theoretical and computational

models. This reliance operates under the principle, articulated by statistician

George Box, that “all models are wrong, but some are useful”. These

models serve as formal hypotheses for how the anatomical structures, neural

representations, and network dynamics of the hippocampus give rise to its

cognitive functions while also acting as engines for generating new, testable

predictions (Epstein 2008). The models exist across multiple levels of

abstraction, each offering a unique trade-off between biological realism and

explanatory power.

At one end of the spectrum are biophysically detailed models, which

aim to simulate the behaviour of individual neurons and even synapses with

a high degree of fidelity, often incorporating specific ion channels (Hodgkin

et al. 1952; Chen et al. 2022) and cellular morphologies (Ascoli et al. 2007).

While these models are invaluable for understanding how specific cellular

mechanisms contribute to network phenomena (e.g., the generation of theta

rhythms (Buzsáki 2002)), their complexity makes it difficult to extract general

computational principles, and, to date, they have never displayed truly

“intelligent” behaviours.

At a higher level of abstraction are connectionist and network-level

models. These models, such as continuous attractor networks (Zhang 1996),

simplify the behaviour of individual neurons but focus on the collective dynamics

of the network (Hopfield 1982). Attractor models have been particularly

influential (Wills et al. 2005) in the hippocampal and spatial modelling literature,

proposing that place cell activity emerges from recurrent connectivity within

the hippocampus (Rolls et al. 2006). In this view, the network can “settle” into
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a stable state or “attractor” that corresponds to a specific location, providing

a robust mechanism for self-localisation and memory completion.

Finally, normative, or functional-level, models operate at the highest

level of abstraction, often drawing inspiration from statistics (Knill et al.

2004), machine learning (Banino et al. 2018; Hassabis et al. 2017), and

reinforcement learning (Schultz et al. 1997). These models prioritise the question

of what the hippocampus computes over how it is implemented biologically.

Examples include Bayesian models that treat hippocampal activity as encoding

a probability distribution over the animal’s location (Deneve et al. 2001),

the aforementioned successor representation (SR), which frames hippocampal

function in terms of predicting future states (Stachenfeld et al. 2017), as well

as the Tolman-Eichenbaum Machine (TEM) (Whittington et al. 2020), which

posits that the hippocampus binds sensory inputs with internally generated

predictions to support flexible navigation and planning. Notably, models like

TEM are explicitly hybrid, incorporating both high-level normative ideas and

concrete network-level mechanisms, thereby representing an important step

towards reconciling these different levels of analysis.

While all these modelling approaches have yielded critical insights, a

significant challenge remains in reconciling the elegance and power of normative

theories with the messy, constrained reality of biological hardware (Marr 1982;

Barak 2017). This thesis contributes directly to this effort by developing and

analysing models that are inspired by normative principles but are explicitly

designed to respect the known anatomical and physiological constraints of the

hippocampal formation. I believe this exercise is worthwhile for two principal

reasons: Firstly, grounding abstract theories in biology provides a crucial

existence proof, demonstrating that the computations they propose are actually

achievable within the known constraints of neural hardware. Secondly, by

linking normative functions to specific biological mechanisms, our theories often

become more generalisable (Carandini et al. 2011). A principle discovered in

the hippocampus can then illuminate our understanding of other brain regions
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that employ similar circuits or synaptic learning rules, helping to build a more

unified picture of neural computation.

0.1.5 Theoretical and Computational Modelling of Hip-

pocampal Function
The modern toolkit for computational neuroscience is largely built on the

Python programming language, benefiting from its ease of use and extensive

ecosystem of open-source libraries for scientific computing. Despite this common

foundation, a significant challenge persists in how models are developed and

shared. The prevailing culture is often one of bespoke creation, where individual

labs or researchers build unique, single-use codebases for their specific questions.

While this approach provides a great deal of flexibility, it creates a fragmented

landscape that is inefficient and possibly even detrimental to overall progress.

This fragmentation leads to a massive duplication of effort as researchers

repeatedly reinvent foundational components—for example, coding up a simple

motion model, or the receptive field of a grid cell—and more importantly, it

erects barriers to reproducibility and direct model comparison.

Fortunately, this challenge has not gone unrecognised, and in recent years

the field has made large strides towards open, collaborative science. Landmark

open-source endeavours are transforming how we analyse and share empirical

data. Toolkits for animal pose estimation like DeepLabCut (Mathis et al.

2018) and SLEAP (Pereira et al. 2022) have standardised complex behavioural

analysis, while large-scale data repositories from the Allen Institute for Brain

Science (Vries et al. 2023) and standards like Neurodata Without Borders

(NWB) (Rübel et al. 2022) have democratised access to neural recordings.

Similar movements towards standardisation have also been emerging in the

domain of in-silico experimentation, particularly for low-level spiking neural

simulators (Hines et al. 1997; Goodman 2008). Despite this, the community still

lacks widely adopted, high-level toolkits specifically for generating synthetic

data or for rapidly prototyping, training, and comparing complex hippocampal

models, a topic we directly tackle in Chapter 1.
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While the models themselves often receive more attention, the shared

toolkits used to build them are as fundamental to scientific progress. Creating

robust, reusable software is a critical part of our responsibility as scientists

because it directly supports the core principles of reproducibility and

collaboration. This infrastructure work is a necessary investment in the long-

term health and efficiency of our field.

0.2 Overarching Themes and Methods
The preceding sections have established a central challenge in neuroscience:

reconciling high-level theories of cognition with the complex, constrained

realities of biological circuits. This thesis confronts this challenge directly

through research that is loosely organised around two key themes.

The first is the development and analysis of computational models

that are explicitly designed to be biologically plausible. My research

strategy is to use these models as a bridge between the functional principles

of machine learning and the known anatomy, physiology, and dynamics of

the hippocampal formation. The second theme is the development and

validation of computational tools to enable better computational

model building and data visualisation.

0.3 Key Contributions of This Thesis
This thesis presents four primary research contributions, each targeting a

distinct gap between high-level theory and biological mechanism and aligned

with the themes outlined above.

0.3.1 A Standardised Toolkit for Reproducible Hip-

pocampal Modelling and Data Generation
A significant practical barrier in computational neuroscience is the lack

of standardised environments for building and testing models, leading to

fragmented and difficult-to-replicate research. To address this, this thesis

introduces the open-source Python package, RatInABox, which has seen
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significant adoption by the community—with over 55,000 downloads to date—

and provides a standardised platform for simulating rodent locomotion and the

activity of spatially modulated neurons. It is designed to facilitate the rapid

prototyping and testing of hypotheses about how behaviour, representations,

and learning interact in the context of the cognitive map. By providing a

common framework for simulation, this package aims to reduce fragmentation

and promote more efficient and reproducible research practices (Barnes 2010;

Wilson et al. 2017). This work is a direct contribution to the second theme

of this thesis: the development of computational tools to enable better model

building.

0.3.2 A Biologically Plausible Mechanism for Learning

Predictive Maps
A leading normative theory is that the hippocampus builds a “predictive map”

of the environment, formalised by the successor representation (SR) (Dayan

1993). This framework powerfully explains how animals can navigate flexibly by

representing not just their current location, but a predictive landscape of future

locations (Stachenfeld et al. 2017). A major unresolved issue, however, is how

such a predictive map could be learned by hippocampal circuits. The canonical

algorithm for learning SRs, temporal difference (TD) learning, is difficult to

map onto known hippocampal biology, particularly given the very different

timescales of spike-timing based synaptic plasticity (O(20 ms)) (Markram et al.

1997; Bi et al. 1998) and behaviour (O(10 s)).

This thesis proposes and validates a novel, biologically plausible mechanism

for learning the SR. Specifically, I show how theta phase precession allows

STDP, a learning rule sensitive to millisecond-timescale spike timing, to

rapidly integrate information over behavioural timescales of many seconds.

The resulting model learns synaptic weights that closely approximate the SR,

successfully explaining empirical observations like the goal-directed skewing

of place fields (Mehta et al. 1997). In line with the first theme of this thesis,

this work forges a deep, previously unappreciated theoretical link between the
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cellular mechanism of STDP and the algorithmic principle of TD learning,

providing a more concrete mechanism for how predictive maps can be learned

in the brain.

0.3.3 A Generative Model for Path Integration and

Mental Simulation
Beyond representing known locations, the cognitive map supports generative

functions, such as estimating one’s position by integrating self-motion cues

(path integration) (McNaughton et al. 2006) or simulating future trajectories

(“mind travel”) (Johnson et al. 2007; Buckner et al. 2007). A promising class of

models, including the Tolman-Eichenbaum Machine (Whittington et al. 2020),

posits that the brain accomplishes this by operating as a predictor-comparator

circuit, constantly matching internally generated predictions against incoming

sensory evidence (Rao et al. 1999). However, these models often rely on learning

algorithms like backpropagation-through-time or make unrealistic assumptions

about pre-existing neural connectivity (Lillicrap et al. 2020), leaving their

biological feasibility an open question.

To address this, this thesis introduces the “Helmholtz Hippocampus,” a

generative model of the hippocampal-entorhinal loop that performs these

functions using only local, Hebbian-like learning rules. The central hypothesis

is that theta oscillations act as a control signal, rapidly switching multi-

compartmental neurons between two distinct phases of operation—one for

encoding bottom-up sensory input and one for generating top-down internal

predictions. This mechanism, analogous to the wake-sleep algorithm of a

Helmholtz Machine (Hinton et al. 1995; Dayan et al. 1995), allows the network

to self-organise a self-sustaining continuous ring attractor structure from

unstructured sensory input (Zhang 1996). The neurons in this emergent

attractor network share numerous properties with entorhinal grid cells and

provide a robust substrate for path integration. This work, which aligns with the

first theme of this thesis, demonstrates how fundamental biophysical properties

like neural oscillations can be harnessed to implement sophisticated generative
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computations.

0.3.4 A Practical Method for Discovering Latent Neural

Representations
A foundational challenge in neuroscience is to accurately characterise the

relationship between neural activity (spikes) and the variables it represents.

Accurately doing so tells us a lot about the function of a system and can

give clues to the underlying mechanisms or computational principles at play.

Often, however, both the variables being encoded by a neural system and how

they map to neural activity (their “tuning curves”) are, a priori, unknown.

This creates a “catch-22” scenario, well studied in both neuroscience and

machine learning, known as the latent variable problem (Paninski et al. 2007).

A majority of hippocampal research has historically bypassed this problem by

assuming the latent variable is a directly measurable behavioural correlate,

such as the animal’s physical position. This assumption was instrumental in

the development of the cognitive map theory and the discovery of functional

cell types like place cells.

This reliance on observed behaviour is, however, fundamentally limiting, as

an animal’s internal latent can diverge from its externally measured state (Low

et al. 2018)—a discrepancy made explicitly evident during dynamic phenomena

like theta sequences and memory replay (Wilson et al. 1994). Such mismatches

are a subtle but important roadblock in our goal to bridge high-level theories

of neural function with low-level biological mechanisms, since doing so requires

knowing the tuning curves of individual neurons with considerable precision.

Traditional analyses, which presuppose a direct correspondence between firing

and behaviour, can be distorted by this discrepancy, leading to an incomplete

understanding of the neural code. This often results in tuning curves that

appear noisy, weak, or spatially imprecise, masking the true fidelity of the

underlying neural representation (Pillow et al. 2008).

To overcome this limitation, this thesis presents SIMPL (Scalable Iterative

Maximisation of Population-coded Latents), a novel and computationally
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efficient method for latent variable discovery. SIMPL operates by recursively

optimising both the neural tuning curves and the trajectory of the underlying

latent variable, using the observed behaviour only as an initial “best guess.” It

thus synergises the interpretability and speed of traditional analysis with

the statistical power of modern approaches to latent variable modelling,

such as expectation-maximisation (Dempster et al. 1977). When applied

to hippocampal recordings, SIMPL uncovers place fields that are sharper,

more numerous, and more stable than those inferred from behaviour alone,

suggesting that the brain’s cognitive map may be significantly more precise

than previously thought. As a contribution to the second theme of this thesis,

SIMPL provides a more accurate and robust lens for investigating the link

between neural dynamics and representation across diverse brain regions.

0.4 Thesis Structure
The remainder of this thesis is organised as follows:

• Chapter 1: The RatInABox toolkit details the open-source Python

toolkit developed to facilitate realistic simulations of rodent locomotion

and associated neural activity, serving as a foundational platform for all

subsequent modelling work.

• Chapter 2: Theta Sequences as Eligibility Traces explores how

theta sequences in the hippocampus can function analogously to eligibility

traces in reinforcement learning, providing a biological solution to the

long-term credit assignment problem. It serves as a theoretical precursor

to the more plausible learning mechanisms explored in Chapter 3 and

may be skipped by readers primarily interested in the latter.

• Chapter 3: Learning Predictive Maps with STDP and Theta

presents a detailed model demonstrating that STDP, when augmented by

theta phase precession, is sufficient to rapidly learn a close approximation

of the successor representation, consistent with hippocampal data.
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• Chapter 4: The Hippocampal Generative Model introduces a

generative model of the hippocampal-entorhinal loop that performs path

integration and mental simulation using local learning rules and oscillation-

controlled message passing.

• Chapter 5: SIMPL: A Neural Latent Variable Model presents an

efficient method for neural latent discovery that optimises tuning curves

and latent trajectories from spiking data.

• Chapter 6: General Conclusions synthesises the findings across the

thesis and discusses their broader implications as well as future directions

for research in computational neuroscience.

0.5 Broader Impact and Future Directions
The research presented in this thesis collectively advances our understanding of

learning and representation by providing concrete, biologically plausible models

for abstract cognitive functions. It also contributes a new, widely-adopted

software tool to the computational neuroscience community. A central insight

emerging from this work is the critical and dynamic interplay between synaptic

structure (the learned weights of the network) and ongoing neural dynamics

(the latent factors that shape activity in real-time) (Buonomano et al. 2009).

Understanding when and why the brain relies on modifying long-term

structure versus modulating short-term dynamics is a key question for future

research. This distinction mirrors important debates in modern artificial

intelligence, such as the difference between “in-weights” and “in-context” (Brown

et al. 2020) learning in large language models, or the trade-offs between model-

based and model-free reinforcement learning (Daw et al. 2005; Geerts et al.

2020), as well as in neuroscience, such as the distinction between episodic

and working memory (El-Gaby et al. 2024; Whittington et al. 2025). The

path forward lies in developing a more unified theory that explains how

these two modes of computation are balanced and integrated across different
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cognitive domains. The models and methods developed in this thesis provide a

foundational step in that direction.





Chapter 1

RatInABox, a toolkit for

modelling locomotion and

neuronal activity in continuous

environments

Summary
Generating synthetic locomotory and neural data is a useful yet cumbersome

step commonly required to study theoretical models of the brain’s role in spatial

navigation. This process can be time consuming and, without a common

framework, makes it difficult to reproduce or compare studies which each

generate test data in different ways. In response, I present RatInABox, an

open-source Python toolkit designed to model realistic rodent locomotion

and generate synthetic neural data from spatially modulated cell types. This

software provides users with (i) the ability to construct one- or two-dimensional

environments with configurable barriers and visual cues, (ii) a physically realistic

random motion model fitted to experimental data, (iii) rapid online calculation

of neural data for many of the known self-location or velocity selective cell

types in the hippocampal formation (including place cells, grid cells, boundary

vector cells, head direction cells) and (iv) a framework for constructing custom
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cell types, multi-layer network models and data- or policy-controlled motion

trajectories. The motion and neural models are spatially and temporally

continuous as well as topographically sensitive to boundary conditions and

walls. It is demonstrated that out-of-the-box parameter settings replicate

many aspects of rodent foraging behaviour such as velocity statistics and

the tendency of rodents to over-explore walls. Numerous tutorial scripts are

provided, including examples where RatInABox is used for decoding position

from neural data or to solve a navigational reinforcement learning task. I hope

this tool will significantly streamline computational research into the brain’s

role in navigation.

1.1 Introduction: The Need for Standardized

Tools in Computational Neuroscience
Computational modelling provides a means to understand how neural circuits

represent the world and influence behaviour, interfacing between experiment

and theory to express and test how information is processed in the brain. Such

models have been central to understanding a range of neural mechanisms,

from action potentials (Hodgkin et al. 1952) and synaptic transmission between

neurons (Castillo et al. 1954), to how neurons represent space and guide complex

behaviour (Hartley et al. 2000; Hartley et al. 2004; Byrne et al. 2007; Banino

et al. 2018; Cothi et al. 2022a). Relative to empirical approaches, models can

offer considerable advantages, providing a means to generate large amounts

of data quickly with limited physical resources, and are a precise means to

test and communicate complex hypotheses. To fully realise these benefits,

computational modelling must be accessible and standardised, something which

has not always been the case.

Spurred on by the proposition of a “cognitive map” (Tolman et al. 1930),

and the discovery of neurons with position- (O’Keefe et al. 1971), velocity-

(Sargolini et al. 2006; Kropff et al. 2015) and head direction- (Taube et al.

1990)selective receptive fields in the hippocampal formation, understanding
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the brain’s role in navigation and spatial memory has been a key goal of the

neuroscience, cognitive science, and psychology communities. In this field it is

common for theoretical or computational models to rely on artificially generated

data sets. For example, for the direct testing of a normative model, or to feed

a learning algorithm with training data from a motion model used to generate

a time series of states, or feature-vectors. Not only is this data more cost-

effective, quicker to acquire, and less resource-intensive than conducting spatial

experiments (no rats required), but it also offers the advantage of being flexibly

hand-designed to support the validation or refutation of theoretical propositions.

Indeed, many past (Mehta et al. 2000; Burak et al. 2009; Gustafson et al. 2011)

and recent (Stachenfeld et al. 2017; Cothi et al. 2020a; Bono et al. 2021; George

et al. 2023a; Banino et al. 2018; Schaeffer et al. 2022; Benna et al. 2021) models

have relied on artificially generated movement trajectories and neural data.

Artificially generating data can still be a bottleneck in the scientific process.

I observe a number of issues: First, the lack of a universal standard for

trajectory and cell activity modelling hinders apples-to-apples comparisons

between theoretical models whose conclusions may differ depending on the

specifics of the models being used. Secondly, researchers must begin each

project reinventing the wheel, writing software capable of generating pseudo-

realistic trajectories and neural data before the more interesting theoretical

work can begin. Thirdly, inefficiently written software can significantly slow

down simulation time or, worse, push users to seek solutions which are

more complex and power-intensive (multithreading, GPUs, etc.) than the

underlying task requires, decreasing reproducibility. Finally, even the relatively

modest complexities of motion modelling in continuous environments raises the

technical entry barrier to computational research and can impel researchers

towards studying only one-dimensional environments or biologically unrealistic

“gridworlds” with tabularised state spaces. Not only can gridworld models

scale poorly in large environments but they typically disregard aspects of

motion which can be non-trivial, for example speed variability and inertia.
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Whilst there are valid reasons why gridworld and/or tabularised state-space

models may be preferred – and good open source packages for modelling this

(Chevalier-Boisvert et al. 2023; Juliani et al. 2022) – it is likely that coding

simplicity, rather than theory-based justifications, remains a common reason

these are used over continuous analogs. Recognizing these challenges, other

recent efforts have sought to provide standardised frameworks for comparing

different computational models against a library of experimental datasets

(Dominé et al. 2024).

To overcome these issues, I built RatInABox (https://github.com/R

atInABox-Lab/RatInABox): an open source Python toolkit for efficient and

realistic motion modelling in complex continuous environments and concurrent

simulation of neuronal activity data for many cell types including those typically

found in the hippocampal formation (Figure 1.1).

1.2 RatInABox: Toolkit Components and

Features
RatInABox is an open source software package comprising three component

classes:

• Environment: The environment (or “box”) that the Agent exists in.

An Environment can be 1- or 2-dimensional, contain walls/barriers,

holes, & objects and they can have periodic or solid boundary conditions

(Figure 1.1a, b, d, and e).

• Agent: The agent (or “rat”) moving around the Environment (Figure 1.1a

and d). Agents are 0-dimensional and Environments can contain multiple

Agents simultaneously.

• Neurons: A population of neurons whose firing rates update to encode

the “state” of the Agent in a rich variety of ways. Specific subclasses

are provided corresponding to commonly studied cell-types (including,

but not limited to, PlaceCells, GridCells, BoundaryVectorCells and

https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox
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Figure 1.1: RatInABox is a flexible toolkit for simulating locomotion and neural
data in complex continuous environments. (a) One minute of motion in a 2D
Environment with a wall. By default the Agent follows a physically realistic random
motion model fitted to experimental data. (b) Premade neuron models include
the most commonly observed position/velocity selective cells types (6 of which
are displayed here). Users can also build more complex cell classes based on these
primitives. Receptive fields interact appropriately with walls and boundary conditions.
(c) As the Agent explores the Environment, Neurons generate neural data. This can
be extracted for downstream analysis or visualised using in-built plotting functions.
Solid lines show firing rates, and dots show sampled spikes. (d) One minute of
random motion in a 1D environment with solid boundary conditions. (e) Users can
easily construct complex Environments by defining boundaries and placing walls,
holes and objects. Six example Environments, some chosen to replicate classic
experimental set-ups, are shown here.

HeadDirectionCells, Figure 1.1b and c). Users can also write their

own Neurons subclasses or build/train complex function-approximator

Neurons based on these primitives.

A typical workflow would be as follows: Firstly, an Environment is

initialised with parameters specifying its dimensionality, size, shape and

boundary conditions. Walls (or “barriers”), holes and objects (which act as

“visual cues”) can be added to make the Environment more complex. Secondly,

an Agent is initialised with parameters specifying the characteristics of its
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motion (mean/standard deviation of its speed and rotational velocity, as well

as behaviour near boundaries). Thirdly, populations of Neurons are initialised

with parameters specifying their characteristics (number of cells, receptive field

parameters, maximum firing rates etc.).

Next, a period of simulated motion occurs: on each step the Agent updates

its position and velocity within the Environment, given the duration of the

step, and Neurons update their firing rates to reflect the new state of the Agent.

After each step, data (timestamps, position, velocities, firing rates and spikes

sampled according to an inhomogeneous Poisson process) are saved into their

respective classes for later analysis; see fig. 1.1.

RatInABox is fundamentally continuous in space and time. Position and

velocity are never discretised but are instead stored as continuous values and

used to determine cell activity online, as exploration occurs. This differs from

other models which are either discrete (e.g. “gridworld” or Markov decision

processes) (Chevalier-Boisvert et al. 2023; Juliani et al. 2022) or approximate

continuous rate maps using a cached list of rates precalculated on a discretised

grid of locations (Cothi et al. 2020a). Modelling time and space continuously

more accurately reflects real-world physics, making simulations smooth and

amenable to fast or dynamic neural processes which are not well accommodated

by discretised motion simulators. Despite this, RatInABox is still fast; to

simulate 100 PlaceCells for 10 minutes of random 2D motion (dt = 0.1 s)

it takes about 2 seconds on a consumer-grade CPU laptop (or 7 seconds for

boundary vector cells).

By default the Agent follows a temporally continuous smooth random

motion model, closely matched to the statistics of rodent foraging in an open

field (Sargolini et al. 2006) (fig. 1.2); however, functionality is also provided

for non-random velocity control (via a user-provided control signal) or for the

Agent to follow an imported trajectory (fig. 1.3a). Once generated, data can be

plotted using in-built plotting functions (which cover most of the figures in this

chapter) or extracted to be used in the theoretical model being constructed by

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/list_of_plotting_fuctions.md
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the user.

1.2.1 Intended Use-Cases
Use cases are envisaged to fall into two broad categories. (i) Data generation:

The user is interested in generating realistic trajectories and/or neural data for

use in a downstream analysis or model training procedure (for example (Lee

et al. 2023) or the work discussed in Chapter 5. (ii) Advanced modelling: The

user is interested in building a model of the brain’s role in navigation, including

how behaviour and neural representations mutually interact (for example the

work discussed in Chapter 4).

The most important details and features of RatInABox are briefly described

below, divided into their respective classes. I leave all mathematical details

to Appendix A. Additional details (including example scripts and figures) can

also be found in Appendix A and on the GitHub repository. The codebase

itself is comprehensively documented and can be referenced for additional

understanding where necessary.

1.2.2 The Environment

Unlike discretised models, where environments are stored as sets of nodes

(‘states’) connected by edges (‘actions’) (Juliani et al. 2022), here Environments

are continuous domains containing walls (1D line segments through which

locomotion is not allowed) and objects (which are 0-dimensional and act as

visual cues). Boundaries and visual cues are thought to provide an important

source of sensory data into the hippocampus (O’Keefe et al. 1996; Hartley et al.

2000; Barry et al. 2006; Solstad et al. 2008) and play an important role in

determining cell activity during navigation (Stachenfeld et al. 2017; Cothi et al.

2020a). An Environment can have periodic or solid boundary conditions and

can be one- or two-dimensional (Figure 1.1a and d).

1.2.3 The Agent

Physically realistic random motion Smooth and temporally continuous

random motion can be difficult to model. To be smooth (and therefore physically
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plausible) a trajectory must be continuous in both position and velocity. To be

temporally continuous, the statistics of the motion must be independent of the

integration timestep being used. To be random, position and velocity at one time

must not be reliable predictors of position and velocity at another time, provided

these times are separated by a sufficiently long interval. Implementations of

random motion models typically fail to satisfy one, or sometimes two, of these

principles (Raudies et al. 2012; Benna et al. 2021).

Ornstein-Uhlenbeck processes, which sit at the heart of the RatInABox

random motion model, are continuous-in-time random walks with a tendency

to return to a central drift value. The decorrelation timescale can be also be

controlled. These are used to update the velocity vector (linear and rotational

velocities updated independently) on each update step. Position is then updated

by taking a step along the velocity vector with some additional considerations

to avoid walls. This method ensures both position and velocity are continuous,

yet evolve “randomly” (fig. 1.1a and d), and the statistics of the motion is

independent of the size of the discretisation timestep being used.

Reanalysing rat locomotion data from Sargolini et al. (2006) (as has been

done before, by Raudies et al. (2012)) I found that the histograms of linear

speeds are well fit by a Rayleigh distributions whereas rotational velocities are

approximately fit by normal distributions (Figure 1.2a). Unlike Raudies et al.

(2012), I also extract the decorrelation timescale of these variables and observe

that rotational velocity in real locomotion data decorrelates nearly an order of

magnitude faster than linear velocity (0.08 s vs. 0.7 s). The default parameters

of the Ornstein-Uhlenbeck processes (including applying a transform on the

linear velocity so its long-run distribution also follows a Rayleigh distribution,

see Appendix A.2.1) are set to those measured from the Sargolini et al. (2006)

dataset (Figure 1.2b).

Motion near walls Animals rarely charge head-first into a wall, turn around,

then continue in the opposite direction. Instead, they slow down smoothly

and turn to avoid a collision. Additionally, during random foraging, rodents
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Figure 1.2: The RatInABox random motion model closely matches features of
real rat locomotion. (a) An example 5 minute trajectory from the Sargolini et al.
(2006) dataset. Linear velocity (Rayleigh fit) and rotational velocity (Gaussian
fit) histograms and the temporal autocorrelations (exponential fit) of their time
series’. (b) A sampled 5 minute trajectory from the RatInABox motion model with
parameters matched to the Sargolini data. (c) Figure reproduced from Figure 8D
(Satoh et al. 2011) showing 10 minutes of open-field exploration. “Thigmotaxis” is
the tendency of rodents to over-explore near boundaries/walls and has been linked
to anxiety. (d) RatInABox replicates the tendency of agents to over-explore walls
and corners, flexibly controlled with a ‘thigmotaxis’ parameter. (e) Histogram
of the area-normalised time spent in annuli at increasing distances, d, from the
wall. RatInABox and real data are closely matched in their tendency to over-explore
locations near walls without getting too close.

are observed to show a bias towards following walls, a behaviour known as

thigmotaxis (Satoh et al. 2011) (Figure 1.2c). To replicate these observations,

walls in the Environment lightly repel the Agent when it is close. Coupled

with the finite turning speed this creates (somewhat counter-intuitively) a

thigmotactic effect where the agent over-explores walls and corners, matching

what is observed in the data (fig. 1.2e). A user-defined parameter called

“thigmotaxis” can be used to control the strength of this emergent effect

(fig. 1.2d).
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Imported trajectories RatInABox supports importing trajectory data which

can be used instead of the inbuilt random motion model. Imported trajectory

data points (which may be of low temporal-resolution) are interpolated using

cubic splines and smoothly upsampled to user-define temporal precision

(Figure 1.3a). This upsampling is essential if one wishes to use low temporal

resolution trajectory data to generate high temporal resolution neural data.

Trajectory control RatInABox supports online velocity control. At each

integration step a target drift velocity can be specified, towards which the

Agent accelerates. I anticipate this feature being used to generate complex

stereotyped trajectories or to model processes underpinning complex spatial

behaviour (as I demonstrate in fig. 1.3b and e).

1.2.4 Neurons

RatInABox provides multiple premade Neurons subclasses chosen to replicate

the most popular and influential cell models and state representations across

computational neuroscience and machine learning. A selection of these are

shown in Figure 1.1b. See Appendix A.2.3 for mathematical details. These

currently include:

• PlaceCells: A set of locations is sampled uniformly at random from

across the Environment or provided manually, each defining the centre of

a place field. The place cell firing rate is determined by the some function

of the distance from the Agent to the centre of the place field. Provided

functions are

– Gaussian: A Gaussian centred on the place field centre.

– Gaussian threshold: A gaussian cropped and levelled at 1 standard

deviation.

– Difference of two Gaussians: A wide Gaussian subtracted from a

narrower Gaussian with zero total volume.

– Top hat: Fires uniformly only within a circle of specific radius

(similar to tile coding in machine learning).
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– One hot: Only the closest place cell to a given position will fire. This

is useful for replicating tabular state spaces but with continuous

motion.

– PhasePrecessingPlaceCells: A subclass of PlaceCells which

display phase precession (O’Keefe et al. 1993) with respect to a

background LFP theta-oscillation.

• GridCells: Grid cells are modelled using a method proposed by Burgess

et al. (2007). Receptive fields are given by the thresholded or shifted sum

of three cosine waves at 60◦.

• VectorCells: Each vector cells responds to salient features in the

Environment at a preferred distance and angle according to a model

inspired by the double-Gaussian model used by Hartley et al. (2000).

Vector cells can be “allocentric” (angular preferences are relative to true-

North) or “egocentric” (Byrne et al. 2007) (angular preferences are relative

to the Agent’s heading). Types include:

– BoundaryVectorCells: Respond to walls

– ObjectVectorCells: Respond to objects

– AgentVectorCells: Respondto other Agents

– FieldOfViewBVCs/OVCs/AVCs (Egocentric vector cells arranged to

tile the Agent’s field-of-view, further described below)

• HeadDirectionCells: Each cell has a preferred direction. The firing rate

is given by a von Mises distribution centred on the preferred direction.

• VelocityCells: Like HeadDirectionCells but firing rate scales propor-

tional to speed.

• SpeedCell: A single cell fires proportional to the scalar speed of the

Agent.
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• RandomSpatialNeurons: Each cell has a locally-smooth but random

spatial receptive field of user-defined lengthscale.

A dedicated space containing additional cell classes not described here, is made

available for community contributions to this list.

Customizable and trainable Neurons Any single toolkit cannot contain

all possible neural representations of interest. Besides, static cell types (e.g.

PlaceCells, GridCells etc.) which have fixed receptive fields are limiting

if the goal is to study how representations and/or behaviour are learned.

RatInABox provides two solutions: Firstly, being open-source, users can write

and contribute their own bespoke Neurons (instructions and examples are

provided) with arbitrarily complicated rate functions.

Secondly, two types of function-approximator Neurons are provided which

map inputs (the firing rate of other Neurons) to outputs (firing rate) through

a parameterised function which can be hand-tuned or trained to represent an

endless variety of receptive field functions including those which are mixed

selective, non-linear, dynamic and non-stationary.

• FeedForwardLayer: Calculates a weighted linear combination of the

input Neurons with optional bias and non-linear activation function.

• NeuralNetworkNeurons: Inputs are passed through a user-provided

artificial neural network.

Naturally, function-approximator Neurons can be used to model how neural

populations in the brain communicate, how neural representations are learned

or, in certain cases, neural dynamics. In an online demo I show how grid cells

and head direction cells can be easily combined using a FeedForwardLayer to

create head-direction selective grid cells (aka. conjunctive grid cells (Sargolini

et al. 2006)). In Figure 1.3d and associated demo GridCells provide input

to a NeuralNetworkNeuron which is then trained, on data generated during

exploration, to have a highly complex and non-linear receptive field. Function-

approximator Neurons can themselves be used as inputs to other function-
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approximator Neurons allowing multi-layer and/or recurrent networks to be

constructed and studied.

Field of view encodings Efficiently encoding what an Agent can ‘see’ in its

local vicinity (aka. its field of view) is crucial for many modelling studies. A

common approach is to use a convolutional neural network (CNN) to process

an image of the nearby environment and extract activations from the final layer.

However, this method is computationally expensive and necessitates training

the CNN on a large dataset of visual images.

RatInABox offers a more efficient alternative through the use of

VectorCells. Three variants – FieldOfViewBVCs, FieldOfViewOVCs, and

FieldOfViewAVCs – comprise populations of egocentric Boundary-, Object-,

and AgentVectorCells with angular and distance preferences specifically set

to tile the Agent’s field of view. Being egocentric means that the cells remained

fixed in the reference frame of the Agent as it navigates the Environment.

Users define the range and resolution of this field of view. Plotting functions

for visualising the field of view cells, as shown in Figure 1.3c, are provided.

Geometry and boundary conditions In RatInABox, PlaceCells and

VectorCells are sensitive to walls in the Environment. Three distance

geometries are supported: ‘euclidean’ geometry calculates the Euclidean

distance to a place field centre and so cell activity will ‘bleed’ through boundaries

as if they weren’t there. ‘line_of_sight’ geometry allows a place cell to fire

only if there is direct line-of-sight to the place field centre from the current

location. Finally ‘geodesic’ geometry (default) calculates distance according

to the shortest boundary-avoiding path to the cell centre (notice smooth

wrapping of the third place field around the wall in Figure 1.1b). The latter two

geometries respect the observation that place fields don’t typical pass through

walls, an observation which is thought to support efficient generalisation in

spatial reinforcement learning (Gustafson et al. 2011). Boundary conditions

can be periodic or solid. In the former case, place fields corresponding to

cells near the boundaries of the environment will wrap around.
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Rate maps RatInABox simplifies the calculation and visualization of rate

maps through built-in protocols and plotting functions. Rate maps can be

derived explicitly from their known analytic firing functions or implicitly from

simulation data. The explicit method computes rate maps by querying neuron

firing rates at all positions simultaneously, utilizing ’array programming’ to

rapidly compute the rate map. In the implicit approach, rate maps are created

by plotting a smoothed histogram of positions visited by the Agent, weighted

by observed firing rates. Additionally, the tool offers the option to visualize

spikes through raster plots.

1.3 Validation and Use-Case Demonstrations
The default parameters of the random motion model in RatInABox are matched

to observed statistics of rodent locomotion, extracted by reanalysing data from

Sargolini et al. (2006). Trajectories and statistics from the real data (Figure 1.2a)

closely compare to the artificially generated trajectories from RatInABox

(Figure 1.2b). Further, data (Satoh et al. 2011) shows that rodents have a

tendency to over-explore walls and corners, a bias often called “thigmotaxis”

which is particularly pronounced when the animal is new to the environment

(Figure 1.2c). This bias is correctly replicated in the artificial trajectories

generated by RatInABox - the strength of which can be controlled by a single

parameter Agent.thigmotaxis (Figure 1.2d and e).

RatInABox can import and smoothly interpolate user-provided trajectory

data. This is demonstrated in Figure 1.3a where a low-resolution trajectory

is imported into RatInABox and smoothly upsampled using cubic spline

interpolation. The resulting trajectory is a close match to the ground truth.

Note that without upsampling, this data (2 Hz) would be far too low in

temporal-resolution to usefully simulate neural activity. For convenience, the

exact datafile ( Sargolini et al. (2006)) used in Figure 1.3a and fig. 1.2a is

uploaded with permission to the GitHub repository and can be imported

using Agent.import_trajectory(dataset="sargolini"). An additional
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Figure 1.3: Advanced features and computational efficiency analysis. (a) Low
temporal-resolution trajectory data (2 Hz) imported into RatInABox is upsampled
(“augmented”) using cubic spline interpolation. The resulting trajectory is a close
match to the ground truth trajectory ( Sargolini et al. (2006)) from which the low
resolution data was sampled. (b) Movement can be controlled by a user-provided
“drift velocity” enabling arbitrarily complex motion trajectories to be generated.
Here I demonstrate how circular motion can be achieved by setting a drift velocity
(grey arrows) which is tangential to the vector from the centre of the Environment
to the Agent’s position. (c) Egocentric VectorCells can be arranged to tile the
Agent’s field of view, providing an efficient encoding of what an Agent can ‘see’.
Here, two Agents explore an Environment containing walls and an object. Agent-1
(purple) is endowed with three populations of Boundary- (grey), Object- (red), and
Agent- (green) selective field of view VectorCells. Each circle represents a cell,
its position (in the head-centred reference frame of the Agent) corresponds to its
angular and distance preferences and its shading denotes its current firing rate.
The lower panel shows the firing rate of five example cells from each population
over time. (d) A Neurons class containing a feedforward neural network learns,
from data collect online over a period of 300 minutes, to approximate a complex
target receptive field from a set of grid cell inputs. This demonstrates how learning
processes can be incorporated and modelled into RatInABox. (e) RatInABox used in
a simple reinforcement learning example. A policy iteration technique converges onto
an optimal value function (heatmap) and policy (trajectories) for an Environment
where a reward is hidden behind a wall. State encoding, policy control and the
Environment are handled naturally by RatInABox. (f) Compute times for common
RatInABox (purple) and non-RatInABox (red) operations on a consumer-grade CPU.
Updating the random motion model and calculating boundary vector cell firing rates
is slower than place or grid cells (note log-scale) but comparable, or faster than,
size-matched non-RatInABox operations. Inset shows how the total update time
(random motion model and place cell update) scales with the number of place cells.
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trajectory dataset from a much larger environment is also supplied with

permission from Tanni et al. (2022).

RatInABox is computationally efficient. I compare compute times for

typical RatInABox operations (Figure 1.3f, purple bars) to typical non-

RatInABox operations representing potential ‘bottlenecking’ operations in

a downstream analysis or model-training procedure for which RatInABox is

providing data (Figure 1.3f, red bars). These were multiplying a matrix by a

vector using the numpy (Harris et al. 2020) package and a forward and backward

pass through a small feedforward artificial neural network using the pytorch

package (Paszke et al. 2019). PlaceCells, GridCells and the random motion

model all update faster than these two operations. BoundaryVectorCells

(because they require integrating around a 360◦ field-of-view) are significantly

slower than the other cells but still outpace the feedforward neural network.

All vector, matrix, and cell populations were size n = 100, the feedforward

network had layer sizes nL = (100, 1000, 1000, 1), the Environment was 2D

with no additional walls and all operations were calculated on a consumer-grade

CPU (MacBook Pro, Apple M1). These results imply that, depending on the

details of the use-case, RatInABox will likely not be a significant computational

bottleneck.

Testing (Figure 1.3f, inset) reveals that the combined time for updating the

motion model and a population of PlaceCells scales sublinearly O(1) for small

populations n < 1000 where updating the random motion model dominates

compute time, and linearly for large populations n > 1000. PlaceCells,

BoundaryVectorCells and the Agent motion model update times will be

additionally affected by the number of walls/barriers in the Environment. 1D

simulations are significantly quicker than 2D simulations due to the reduced

computational load of the 1D geometry.

1.3.1 Case Studies
I envisage RatInABox being used to support a range of theoretical studies by

providing data and, if necessary, infrastructure for building models powered
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by this data. This ‘Bring-Your-Own-Algorithm’ approach makes the toolkit

generally applicable, not specialised to one specific field. Two exemplar use-

cases are provided in Appendix A.3.2 and are briefly described below. The

intention is to demonstrate the capacity of RatInABox for use in varied types

of computational studies and to provide tutorials as a tool for learning how to

use the package. Many more demonstrations and accompanying notebooks are

provided on the Github repository.

In my first example I perform a simple experiment where location is

decoded from neural firing rates (summarised in Figure A.1). Data – the

location and firing rate trajectories of an Agent randomly exploring a 2D

Environment – are generated using RatInABox. Gaussian process regression

is used to predict position from firing rates on a held-out testing dataset. I

compare the accuracy of decoding using different cell types; place cells, grid

cells and boundary vector cells.

Next, I demonstrate the application of RatInABox to a simple reinforcement

learning (RL) task (summarised in Figure 1.3e). A small network capable of

model-free RL is constructed and trained using RatInABox. First a neuron

calculates and learns – using a continuous variant of temporal difference learning

– the value function V π(x) =
∑
iwiF

pc
i (x) as a linear combination of place

cell basis features. Then a new ‘improved’ policy is defined by setting a drift

velocity – which biases the Agent’s motion – proportional to the gradient of the

value function vdrift(x) = π(x) ∝ ∇V π|x. The Agent is therefore encouraged

to move towards regions with high value. Iterating between these stages over

many episodes (“policy iteration”) results in convergence towards near optimal

behaviour where the Agent takes the shortest route to the reward, avoiding

the wall (Figure 1.3e).

Additional tutorials, not described here but available online, demonstrate

how RatInABox can be used to model splitter cells, conjunctive grid cells,

biologically plausible path integration, successor features, deep actor-critic

RL, whisker cells and more. Despite including these examples I stress that

https://github.com/RatInABox-Lab/RatInABox/tree/main/demos
https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/
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they are not exhaustive. RatInABox provides the framework and primitive

classes/functions from which highly advanced simulations such as these can be

built.

1.4 Discussion: Scope, Assumptions, and Fu-

ture Development
RatInABox is a lightweight, open-source toolkit for generating realistic,

standardised trajectory and neural data in continuous environments. It should

be particularly useful to those studying spatial navigation and the role of the

hippocampal formation. It remains purposefully small in scope - intended

primarily as a means for generating data. I do not provide, nor intend to

provide, a set of benchmark learning algorithms to use on the data it generates.

Its user-friendly API, inbuilt data-plotting functions and general yet modular

feature set mean it is well placed empower a wide variety of users to more

rapidly build, train and validate models of hippocampal function (Lee et al.

2023) and spatial navigation (George et al. 2023b), accelerating progress in the

field.

This package is not the first to model neural data (Stimberg et al. 2019;

Hepburn et al. 2012; Hines et al. 1997) or spatial behaviour (Todorov et al. 2012;

Merel et al. 2019) yet it distinguishes itself by integrating these two aspects

within a unified, lightweight framework. The modelling approach employed by

RatInABox involves certain assumptions:

1. It does not engage in the detailed exploration of biophysical (Stimberg

et al. 2019; Hines et al. 1997) or biochemical (Hepburn et al. 2012) aspects

of neural modelling, nor does it delve into the mechanical intricacies of

joint and muscle modelling (Todorov et al. 2012; Merel et al. 2019). While

these elements are crucial in specific scenarios, they demand substantial

computational resources and become less pertinent in studies focused on

higher-level questions about behaviour and neural representations.
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2. A focus of this package is modelling experimental paradigms commonly

used to study spatially modulated neural activity and behaviour in

rodents. Consequently, environments are currently restricted to being two-

dimensional and planar, precluding the exploration of three-dimensional

settings. However, in principle, these limitations can be relaxed in the

future.

3. RatInABox avoids the oversimplifications commonly found in discrete

modelling, predominant in reinforcement learning (Chevalier-Boisvert

et al. 2023; Juliani et al. 2022), which I believe impede its relevance to

neuroscience.

4. Currently, inputs from different sensory modalities, such as vision

or olfaction, are not explicitly considered. Instead, sensory input

is represented implicitly through efficient allocentric or egocentric

representations. If necessary, one could use the RatInABox API in

conjunction with a third-party computer graphics engine to circumvent

this limitation.

5. Finally, focus has been given to generating synthetic data from steady-

state systems. Hence, by default, agents and neurons do not explicitly

include learning, plasticity or adaptation. Nevertheless, it has been

shown that a minimal set of features such as parameterised function-

approximator neurons and policy control enable time varying behavioural

policies and cell responses (Bostock et al. 1991; Barry et al. 2007) to be

modelled within the framework.

In conclusion, while no single approach can be deemed the best, I believe

that RatInABox’s unique positioning makes it highly suitable for normative

modelling and NeuroAI. I anticipate that it will complement existing toolkits

and represent a significant contribution to the computational neuroscience

toolbox.





Chapter 2

Theta Sequences as Eligibility

Traces: A Biological Solution to

Credit Assignment

Hippocampal RL, Part 1

This chapter was submitted to a short paper workshop, hence its brevity. It

can be viewed as a theoretical distillation of the mechanisms and model more

thoroughly explored in Chapter 3, and may be skipped entirely without loss of

continuity.

Summary
Credit assignment problems, for example policy evaluation in RL, often

require bootstrapping prediction errors through preceding states or maintaining

temporally extended memory traces; solutions which are unfavourable or

implausible for biological networks of neurons. I propose theta sequences

– chains of neural activity during theta oscillations in the hippocampus, thought

to represent rapid playthroughs of awake behaviour – as a solution. By analysing

and simulating a model for theta sequences I show they compress behaviour

such that existing but short O(10) ms neuronal memory traces are effectively

extended allowing for bootstrap-free credit assignment without long memory
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traces, equivalent to the use of eligibility traces in TD(λ).

2.1 Introduction: The Timescale Mismatch in

Biological Reinforcement Learning
When one decodes position, xE , from the hippocampus (HPC) of a rodent

it sweeps from behind to in front of the true position, xT , once every theta

cycle (a strong 5-10 Hz neural oscillation). So-called “theta sequences” (Foster

et al. 2007) don’t make sense if the only goal of HPC is to accurately encode

self-location at all times, they likely serve some other objective (Drieu et al.

2019). Building off a body of literature linking fast hippocampal phenomena to

learning and RL (Mehta et al. 2000; Bono et al. 2021; George et al. 2023a), here

it is demonstrated that theta sequences accelerate learning analogous to how

eligibility traces (ETs) accelerate policy evaluation in RL. Policy evaluation with

temporal difference (TD) learning permits two kinds of solutions: prediction

errors can be bootstrapped through preceding states one-by-one (TD(0)) or

temporally extended ETs can be maintained so credit can be assigned to

states directly (Monte-Carlo, aka. TD(1)). These approaches are unified by

the TD(λ) algorithm (Sutton 1988) (see Appendix B.2). Learning with long

ETs, TD(λ > 0), is typically faster, and therefore desirable, but biologically

implausible since individual neurons have no trivial way to maintain ETs over

timescales significantly longer than the membrane time constant O(10− 50) ms.

Perhaps theta sequences provide a solution to this problem: starting behind

and moving in front of the animal rapidly within each cycle, the series of states

observed within a sequence is an exact temporal compression of the states

encountered on behavioural timescales (Figure 2.1a). In this regime the short

neuronal ETs are magnified by the same compression factor and long ETs

are indirectly achieved (see Appendix B.4). I derive the relationship between

TD(λ) and theta sequences and empirically test it on a policy evaluation task

(Figure 2.1b) by comparing artificial agents implementing TD(λ) with varying

λ’s (Figure 2.1c) to biological agents with short eligibility traces, TD(λ ≈ 0),
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undergoing theta sequences of varying velocity (Figure 2.1d).

2.2 An Equivalence Between Theta Sequences

and Eligibility Traces
Temporal difference learning using bioplausibly short ETs, τz = 10 ms, on theta

sequences is algorithmically equivalent to learning with long ETs τ eff
z without

theta sequences (see Appendix B). The effective compression is given by the

ratio of the sequence velocity to the true agent velocity

τ eff
z =

|ẋE |
|ẋT |

τz. (2.1)

Agents move at a constant velocity of vT = 10 cm s−1 around a 2 m track upon

which a small reward is located, whilst learning the value function (Figure 2.1b).

Increasing theta sequence velocity accelerates learning for the biological agent

similar to how increasing the ET timescale accelerates learning for the artificial

agent (Figure 2.1cd, top panel). When sequence velocity is low, learning

resembles heavily bootstrapped TD(0) with the value function slowly creeping

back from the reward site over time. When sequence velocity is high, learning

resembles TD(1) with credit appropriately assigned to all states simultaneously

(Figure 2.1cd, bottom panel). Biologically realistic sequence velocities (2 - 10

ms−1 (Wikenheiser et al. 2015)) match the range in the model where there is a

sharp change from TD(0)-like to TD(1)-like learning regimes. Small errors can

be observed in biological learning (Figure 2.1d doesn’t converge to 1 for slower

sequence speeds) due to, I suspect, ’loop effects’ (Appendix Appendix B.5)

occuring when the sequence discontinuously resets once per theta cycle. These

loop effects are not catastrophic for learning. Despite these effects I actually

find learning on theta sequences is overall less noisy (compare value estimates

in Figure 2.1c and d) probably because, where the artificial agent can visit a

location once per lap, theta sequences can traverse a location multiple times,

smoothing learning. Learning with very fast sequences outpaces the artificial



62 Chapter 2. Theta Sequences as Eligibility Traces

equivalent, probably because a single sweep (the very first) can explore the

entire environment whereas the sequence-less artificial agent must wait until at

least one lap for it to have observed all states. In reality sweeps this fast are

not observed in the brain.

Linear policy evaluation on a 1D track b
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Figure 2.1: a Theta sequences: xE(t) (encoded position), sweeps from behind
to in front of xT (t) (true position), compressing spatial inputs, therefore indirectly
extending memory traces. b A policy evaluation task on a periodic 1D track. The
value function is approximated as a linear sum of Gaussian basis features. c An
artificial agent learns with TD(λ). (Top) Learning curves showing R2 between true
and estimated value functions for increasingly long eligibility traces (increasing λ).
(Bottom) Evolution of the value estimate over learning for two opposing regimes:
short eligibility traces (lots of bootstrapping) and long eligibility traces (no/little
bootstrapping) d As in panel c but a biological agent with short eligibility traces 10
ms learns with theta sequences of increasing velocity. Sequence velocities are chosen
to match eligibility timescales in panel c according to the proposed theory.

2.3 Discussion: Functional Implications
Theta sequences provide a viable mechanism by which biological networks of

neurons can perform long-term credit assignment without resorting to slow

bootstrapping nor maintaining implausibly long memory traces. Increasing

sequence velocity is equivalent to increasing λ – using longer ETs – in TD(λ).

Interestingly, in the brain theta power correlates with environmental uncertainty

(Cavanagh et al. 2011) as well as periods of learning (Joensen et al. 2023) and

sequence velocity depends on an animal’s proximity to reward (Wikenheiser

et al. 2015); based on the results shown here, I conjecture that top-down

processes may actively control theta sequence speeds in order to accelerate or

slow down learning depending on local conditions.



Chapter 3

Rapid Learning of Predictive

Maps with STDP and Theta

Phase Precession

Hippocampal RL, Part 2

Summary
Chapter 2 showed how theta phase precession can compress the timescale

of behaviour allowing short timescale learning rules to rapidly learn long

timescale associations. Here I build a biologically plausible model applying

these ideas to learning successor features—representations encoding long

timescale behavioural associations—with STDP—a short timescale learning

rule for spiking neurons.

The predictive map hypothesis is a promising candidate principle for

hippocampal function. A favoured formalisation of this hypothesis, called the

successor representation, proposes that each place cell encodes the expected

state occupancy of its target location in the near future. This predictive

framework is supported by behavioural as well as electrophysiological evidence

and has desirable consequences for both the generalisability and efficiency of
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reinforcement learning algorithms. However, it is unclear how the successor

representation might be learnt in the brain. Error-driven temporal difference

learning, commonly used to learn successor representations in artificial agents,

is not known to be implemented in hippocampal networks. Instead, it is

demonstrated that spike-timing dependent plasticity (STDP), a form of

Hebbian learning, acting on temporally compressed trajectories known as

“theta sweeps”, is sufficient to rapidly learn a close approximation to the

successor representation. The model is biologically plausible – it uses spiking

neurons modulated by theta-band oscillations, diffuse and overlapping place

cell-like state representations, and experimentally matched parameters. I show

how this model maps onto known aspects of hippocampal circuitry and explains

substantial variance in the temporal difference successor matrix, consequently

giving rise to place cells that demonstrate experimentally observed successor

representation-related phenomena including backwards expansion on a 1D

track and elongation near walls in 2D. Finally, the model provides insight into

the observed topographical ordering of place field sizes along the dorsal-ventral

axis by showing this is necessary to prevent the detrimental mixing of larger

place fields, which encode longer timescale successor representations, with

more fine-grained predictions of spatial location.

3.1 Introduction: The Hippocampus, Predic-

tive Maps, and a Role for STDP
Knowing where you are and how to navigate in your environment is an everyday

existential challenge for motile animals. In mammals, a key brain region

supporting these functions is the hippocampus (Scoville et al. 1957; Morris et al.

1982), which represents self-location through the population activity of place

cells – pyramidal neurons with spatially selective firing fields (O’Keefe et al.

1971). Place cells, in conjunction with other spatially tuned neurons (Taube

et al. 1990; Hafting et al. 2005), are widely held to constitute a “cognitive map”

encoding information about the relative location of remembered locations and
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providing a basis upon which to flexibly navigate (Tolman 1948; O’Keefe et al.

1978).

The hippocampal representation of space incorporates spike time and spike

rate based encodings, with both components conveying broadly similar levels of

information about self-location (Skaggs et al. 1996b; Huxter et al. 2003). Thus,

the position of an animal in space can be accurately decoded from place cell

firing rates (Wilson et al. 1993) as well as from the precise time of these spikes

relative to the background 8-10Hz theta oscillation in the hippocampal local

field potential (Huxter et al. 2003). The latter is made possible since place cells

have a tendency to spike progressively earlier in the theta cycle as the animal

traverses the place field - a phenomenon known as phase precession (O’Keefe

et al. 1993). Therefore, during a single cycle of theta the activity of the place

cell population smoothly sweeps from representing the past to representing the

future position of the animal (Maurer et al. 2006), and can simulate alternative

possible futures across multiple cycles (Johnson et al. 2007).

In order for a cognitive map to support planning and flexible goal-directed

navigation it should incorporate information about the overall structure of

space and the available routes between locations (Tolman 1948; O’Keefe et al.

1978). Theoretical work has identified the regular firing patterns of entorhinal

grid cells with the former role, providing a spatial metric sufficient to support

the calculation of navigational vectors (Bush et al. 2015; Banino et al. 2018).

In contrast, associative place cell-place cell interactions have been repeatedly

highlighted as a plausible mechanism for learning the available transitions in an

environment (Muller et al. 1991; Blum et al. 1996; Mehta et al. 2000). In the

hippocampus, such associative learning has been shown to follow a spike-timing

dependent plasticity (STDP) rule (Bi et al. 1998) – a form of Hebbian learning

where the temporal ordering of spikes between presynaptic and postsynaptic

neurons determines whether long-term potentiation or depression occurs. One

of the consequences of phase precession is that correlates of behaviour, such

as position in space, are compressed onto the timescale of a single theta cycle
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and thus coincide with the time-window of STDP O(20− 50 ms) (Skaggs et al.

1996b; Mehta et al. 2000; Mehta 2001; Mehta et al. 2002). This combination of

theta sweeps and STDP has been applied to model a wide range of sequence

learning tasks (Jensen et al. 1996; Koene et al. 2003; Reifenstein et al. 2021),

and as such, potentially provides an efficient mechanism to learn from an

animal’s experience – forming associations between cells which are separated

by behavioural timescales much larger than that of STDP.

Spatial navigation can readily be understood as a reinforcement learning

problem - a framework which seeks to define how an agent should act to

maximise future expected reward (Sutton et al. 1998). Conventionally the value

of a state is defined as the expected cumulative reward that can be obtained

from that location with some temporal discount applied. Thus, the relationship

between states and the rewards expected from those states are captured in a

single value which can be used to direct reward-seeking behaviour. However,

the computation of expected reward can be decomposed into two components –

the successor representation, a predictive map capturing the expected location

of the agent discounted into the future, and the expected reward associated

with each state (Dayan 1993). Such segregation yields several advantages since

information about available transitions can be learnt independently of rewards

and thus changes in the locations of rewards do not require the value of all

states to be re-learnt. This recapitulates a number of long-standing theories of

hippocampus which state that hippocampus provides spatial representations

that are independent of the animal’s particular goal and support goal-directed

spatial navigation (Redish et al. 1998; Burgess et al. 1997; Koene et al. 2003;

Hasselmo et al. 2005; Erdem et al. 2012).

A growing body of empirical and theoretical evidence suggests that the

hippocampal spatial code functions as a successor representation (Stachenfeld

et al. 2017). Specifically, that the activity of hippocampal place cells encodes a

predictive map over the locations the animal expects to occupy in the future.

Notably, this framework accounts for phenomena such as the skewing of place
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fields due to stereotyped trajectories (Mehta et al. 2000), the reorganisation of

place fields following a forced detour (Alvernhe et al. 2011), and the behaviour

of humans and rodents whilst navigating physical, virtual and conceptual

spaces (Momennejad et al. 2017; Cothi et al. 2022b). However, the successor

representation is typically conceptualised as being learnt using the temporal

difference learning rule (Russek et al. 2017; Cothi et al. 2020b), which uses

the prediction error between expected and observed experience to improve

the predictions. Whilst correlates of temporal difference learning have been

observed in the striatum during reward-based learning (Schultz et al. 1997), it is

less clear how it could be implemented in the hippocampus to learn a predictive

map. In this context, it was hypothesised that the predictive and compression

properties of theta sweeps, combined with STDP in the hippocampus, might

be sufficient to approximately learn a successor representation.

I simulated the synaptic weights learnt due to STDP between a set of

synthetic spiking place cells and show they closely resemble the weights

of a successor representation learnt with temporal difference learning. I

found that the inclusion of theta sweeps with the STDP rule increased the

efficiency and robustness of the learning, with the STDP weights being a close

approximation to the temporal difference successor matrix. Further, I find

no fine tuning of parameters is needed - biologically determined parameters

are optimal to efficiently approximate a successor representation and replicate

experimental results synonymous with the predictive map hypothesis, including

the behaviourally biased skewing of place fields (Mehta et al. 2000; Stachenfeld

et al. 2017) in realistic 1- and 2-dimensional environments. Finally, I use the

simulation of STDP with theta sweeps to generate insight into the observed

topographical ordering of place field sizes along the dorsal-ventral hippocampal

axis (Kjelstrup et al. 2008), by observing that such organisation is necessary

to prevent the detrimental mixing of larger place fields, which approximate

longer timescale successor representations (Momennejad et al. 2018), with

more fine-grained predictions of spatial location. This model, focussing on the
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role of theta sweeps and STDP in learning a hippocampal predictive map, is

part of a growing body of recent work emphasising hippocampally-plausible

mechanisms of learning successor representations, such as using hippocampal

recurrence (Fang et al. 2022) or synaptic learning rules which bootstrap long-

range predictive associations (Bono et al. 2021).

3.2 STDP and Phase Precession Approximate

the Successor Representation
The goal was to investigate whether a combination of STDP and phase

precession is sufficient to generate a successor representation-like matrix of

synaptic weights between place cells in CA3 and downstream CA1. The model

comprises of an agent exploring a maze where its position x(t) is encoded by

the instantaneous firing of a population of N CA3 basis features, each with

a spatial receptive field fxj (x) given by a thresholded Gaussian of radius 1

m and 5 Hz peak firing rate. As the agent traverses the receptive field, its

rate of spiking is subject to phase precession fθj (x, t) with respect to a 10

Hz theta oscillation. This is implemented by modulating the firing rate by

an independent phase precession factor which varies according to the current

theta phase and how far through the receptive field the agent has travelled

(Chadwick et al. 2015)(see Appendix C.3 and Figure 3.1a) such that, in total,

the instantaneous firing rate of the jth basis features is given by:

fj(x, t) = fxj (x)fθj (x, t). (3.1)

CA3 basis features fj then linearly drive downstream CA1 ‘STDP successor

features’ ψ̃i (Figure 3.1b)

ψ̃i(x, t) =
∑
j

Wijfj(x, t). (3.2)
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Using an inhomogeneous Poisson process, the firing rates of the basis and

STDP successor features are converted into spike trains which cause learning

in the weight matrix Wij according to an STDP rule (see Appendix C.4 and

Figure 3.1c). The STDP synaptic weight matrix Wij (Figure 3.1d) can then

be directly compared to the temporal difference (TD) successor matrix Mij

(Figure 3.1e), learnt via TD learning on the CA3 basis features (the full learning

rule is derived in Appendix C.5 and shown in Equation (C.24)). Further, the TD

successor matrix Mij can also be used to generate the ‘TD successor features’:

ψi(x) =
∑
j

Mijf
x
j (x), (3.3)

allowing for direct comparison and analyses with the STDP successor features

ψ̃i (Equation (3.2)), using the same underlying firing rates driving the TD

learning to sample spikes for the STDP learning. This abstraction of biological

detail avoids the challenges and complexities of implementing a fully spiking

network, although an avenue for correcting this would be the approach of Brea

et al. (2016) and Bono et al. (2021). In my model phase precession generates

theta sweeps (Figure 3.1a, grey box) as cells successively visited along the

current trajectory fire at progressively later times in each theta cycle. Theta

sweeps take the current trajectory of the agent and effectively compress it

in time. As is shown below, these compressed trajectories are important for

learning successor features.

3.2.1 STDP Approximates TD-learning
I first simulated an agent with N = 50 evenly spaced CA3 place cell basis

features on a 5 m circular track (linear track with circular boundary conditions

to form a closed loop, Figure 3.2a). The agent moved left-to-right at a constant

velocity for 30 minutes, performing ∼58 complete traversals of the loop. The

STDP weights learnt between the phase precessing basis features and their

downstream STDP successor features (Figure 3.2b) were markedly similar to

the successor representation matrix generated using temporal difference learning
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Figure 3.1: STDP between phase precessing place cells produces successor
representation-like weight matrices. a Schematic of an animal running left-to-
right along a track. 50 cells phase precess, generating theta sweeps (e.g. grey
box) that compress spatial behaviour into theta timescales (10 Hz). b I simulate
a population of CA3 ‘basis feature’ place cells which linearly drive a population
of CA1 ‘STDP successor feature’ place cells through the synaptic weight matrix
Wij . c STDP learning rule; pre-before-post spike pairs (tpost

i − tpre
j > 0) result

in synaptic potentiation whereas post-before-pre pairs (tpost
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j < 0) result in
depression. Depression is weaker than potentiation but with a longer time window,
as observed experimentally. d Simplified schematic of the resulting synaptic weight
matrix, Wij . Each postsynaptic cell (row) fires just after, and therefore binds strongly
to, presynaptic cells (columns) located to the left of it on the track. e Simplified
schematic of the successor matrix (Equation (3.3)) showing the synaptic weights
after training with a temporal difference learning rule, where each CA1 cell converges
to represent the successor feature of its upstream basis feature. Backwards skewing
(successor features “predict” upcoming activity of their basis feature) is reflected in
the asymmetry of the matrix, where more activity is in the lower triangle, similar to
panel d.
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applied to the same basis features under the same conditions (Figure 3.2c,

element-wise Pearson correlation between matrices R2 = 0.87). In particular,

the agent’s strong left-to-right behavioural bias led to the characteristic

asymmetry in the STDP weights predicted by successor representation models

(Stachenfeld et al. 2017), with both matrices dominated by a wide band of

positive weight shifted left of the diagonal and negative weights shifted right.

To compare the structure of the STDP weight matrix Wij and TD successor

matrix Mij , I aligned each row on the diagonal and averaged across rows (see

Appendix C.8), effectively calculating the mean distribution of learnt weights

originating from each basis feature (Figure 3.2d). Both models exhibited a

similar distribution, with values smoothly ramping up to a peak just left of

centre, before a sharp drop-off to the right caused by the left-to-right bias

in the agent’s behaviour. In the network trained by TD learning this is

because CA3 place cells to the left of (i.e. preceding) a given basis feature are

reliable predictors of that basis feature’s future activity, with those immediately

preceding it being the strongest predictors and thus conferring the strongest

weights to its successor feature. Conversely, the CA3 place cells immediately to

the right of (i.e. after) this basis feature are the furthest they could possibly be

from predicting its future activity, resulting in minimal weight contributions.

Indeed, I observed some of these weights even becoming negative (Figure 3.2d)

– necessary to approximate the sharp drop-off in predictability using the smooth

Gaussian basis features. With the STDP model, the similar distribution of

weights is caused by the asymmetry in the STDP learning rule combined with

the consistent temporal ordering of spikes in a theta sweep. Hence, the sequence

of spikes emitted by different cells within a theta cycle directly reflects the

order in which their spatial fields are encountered, resulting in commensurate

changes to the weight matrix. So, for example, if a postsynaptic neuron reliably

precedes its presynaptic cell on the track, the corresponding weight will be

reduced, potentially becoming negative. I note that weights changing their

sign is not biologically plausible, as it is a violation of Dale’s Law (Dale 1935).



72 Chapter 3. Learning Predictive Maps with STDP and Theta

This could perhaps be corrected with the addition of global excitation or by

recruiting inhibitory interneurons.

Notably, the temporal compression afforded by theta phase precession,

which brings behavioural effects into the millisecond domain of STDP, is an

essential element of this process (Lisman et al. 2005; Koene et al. 2003). When

phase precession was removed from the STDP model, the resulting weights

failed to capture the expected behavioural bias and thus did not resemble the

successor matrix - evidenced by the lack of asymmetry (Figure 3.2d, dashed

line; ratio of mass either side of y-axis 4.54 with phase precession vs. 0.99

without) and a decrease in the explained variance of the TD successor matrix

(Figure 3.2e, R2 = 0.87± 0.01 vs R2 = 0.63± 0.02 without phase precession).

Similarly, without the precise ordering of spikes, the learnt weight matrix was

less regular, having increased levels of noise, and converged over 4.5× more

slowly (Figure 3.2e; time to reach R2 = 0.5: 2.5 vs. 11.5 minutes without phase

precession), still yet to fully converge over the course of 1 hour (Figure C.1–

supplement 1a). Thus, the ability to approximate TD learning appears specific

to the combination of STDP and phase precession. Indeed, there are deep

theoretical connections linking the two - see Appendix C.9.1 for a theoretical

investigation into the connections between TD learning and STDP learning

augmented with phase precession. This effect is robust to variations in running

speed (Figure C.1–supplement 1b) and field sizes (Figure C.1–supplement 1c),

as well as scenarios where target CA1 cells have multiple firing fields (Figure C.2–

supplement 2a) that are updated online during learning (Figure C.2–supplement

2b-d), or fully-driven by spikes in CA3 (Figure C.2–supplement 2e).

A hyperparameter sweep was also conducted to test if these results were

robust to changes in the phase precession and STDP learning rule parameters

(Figure C.3). The sweep range for each parameter contained and extended

beyond the “biologically plausible” values used in this chapter (Figure C.3a).

It was found that optimised parameters (those which result in the highest final

similarity between STDP and TD weight matrices, Wij and Mij) were very close
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to the biological parameters already selected for my model from a literature

search (Figure C.3cd, parameter references also listed in figure) and, when they

were used, no drastic improvement was seen in the similarity between Wij and

Mij . The only exception was firing rate for which performance monotonically

improved as it increased - something the brain likely cannot achieve due to

energy constraints. In particular, the parameters controlling phase precession

in the CA3 basis features (Figure C.4a) can affect the CA1 STDP successor

features learnt, with ‘weak’ phase precession resembling learning in the absence

of theta modulation (Figure C.4bc), biologically plausible values providing the

best match to the TD successor features (Figure C.4d) and ‘exaggerated’ phase

precession actually hindering learning (Figure C.4e). Additionally, I find these

CA1 cells go on to inherit phase precession from the CA3 population even after

learning when they are driven by multiple CA3 fields (Figure C.4f), and that

this learning is robust to realistic phase offsets between the populations of CA3

and CA1 place cells (Figure C.4g).

Next, I examined the correspondence between my model and the TD-

trained successor representation in a situation without a strong behavioural

bias. Thus, I reran the simulation on the linear track without the circular

boundary conditions so the agent turned and continued in the opposite direction

whenever it reached each end of the track (Figure 3.2f). Again, the STDP

and TD successor representation weight matrices where remarkably similar

(R2 = 0.88; Figure 3.2gh) both being characterised by a wide band of positive

weight centred on the diagonal (Figure 3.2i) - reflecting the directionally

unbiased behaviour of the agent. In this unbiased regime, theta sweeps were

less important though still confered a modest shape, learning speed, and

signal-strength advantage over the non-phase precessing model (Figure 3.2j) -

evidenced as an increased amount of explained variance (R2 = 0.88± 0.01 vs.

R2 = 0.76± 0.02) and faster convergence (time to reach R2 = 0.5; 3 vs 7.5

minutes).

To test if the STDP model’s ability to capture the successor matrix would
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scale up to open field spaces, I implemented a 2D model of phase precession (see

Appendix C.3) where the phase of spiking is sampled according to the distance

travelled through the place field along the chord currently being traversed

(Jeewajee et al. 2014). I then simulated the agent in an environment consisting

of two interconnected 2.5 × 2.5 m square rooms (Figure 3.2k) using an adapted

policy modelling rodent foraging behaviour that is biased towards traversing

doorways and following walls (Raudies et al. 2012) (see Appendix C.7 and 10

minute sample trajectory shown in Figure 3.2k). After training for 2 hours

of exploration, I found that the combination of STDP and phase precession

was able to successfully capture the structure in the TD successor matrix

(Figure 3.2l-m, R2 = 0.74, TD successor matrix calculated over the same 2

hour trajectory).

3.2.2 Learned Place Fields Exhibit Behaviorally-Biased

Skewing
The next step was to investigate how the similarities in weights between the

STDP and TD successor representation models are conveyed in the downstream

CA1 successor features. One hallmark of the successor representation is that

strong biases in behaviour (for example, travelling one way round a circular

track) induce a reliable predictability of upcoming future locations, which in

turn causes a backward skewing in the resulting successor features (Stachenfeld

et al. 2017). Such skewing, opposite to the direction of travel, has also been

observed in hippocampal place cells (Mehta et al. 2000). Under strongly biased

behaviour on the circular linear track, the biologically plausible STDP CA1

successor features (Equation (3.2)) had a very high correlation with the TD

successor features (Equation (3.3)) predicted by successor theory (Figure 3.3a;

R2 = 0.98± 0.01). Both exhibited a pronounced backward skew, opposite

to the direction of travel (mean TD vs. STDP successor feature skewness:

= −0.39± 0.01 vs. = −0.24± 0.07). Furthermore, both the STDP and TD

successor representation models predict that such biased behaviour should

induce a backwards shift in the location of place field peaks (Figure 3.3a
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Figure 3.2: Successor matrices are rapidly approximated by STDP applied to
spike trains of phase precessing place cells. a Agents traversed a 5 m circular track
in one direction (left-to-right) with 50 evenly distributed CA3 spatial basis features
(example thresholded Gaussian place field shown in blue, radius σ = 1 m). b&c
After 30 minutes, the synaptic weight matrix learnt between CA3 basis features and
CA1 successor features strongly resembles the equivalent successor matrix computed
by temporal difference learning. Rows correspond to CA1, columns to CA3. d To
compare the distribution of weights, matrix rows were aligned on the diagonal and
averaged over rows (mean ± standard deviation shown). e Against training time,
I plot (top) the R2 between the synaptic weight matrix and successor matrix and
(bottom) the signal-to-noise ratio of the synaptic matrix. Vertical lines show time
where R2 reaches 0.5. f -j Same as panels a-e except the agent turns around at each
end of the track. The average policy is now unbiased with respect to left and right,
as can be seen in the diagonal symmetry of the matrices. k-m As in panels a-c
except the agent explores a two dimensional maze where two rooms are joined by a
doorway. The agent follows a random trajectory with momentum and is biased to
traverse doorways and follow walls.
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left panel; TD vs. STDP successor feature shift in metres: −0.28± 0.00 vs

−0.38± 0.03) – this phenomenon is also observed in the hippocampal place

cells (Mehta et al. 2000), and my model accounts for the observation that more

shifting and skewing is observed in CA1 place cells than CA3 place cells (Dong

et al. 2021). As expected, when theta phase precession was removed from the

model no significant skew or shift was observed in the STDP successor features.

Similarly, the skew in field shape and shift in field peak were not present when

the behavioural bias was removed (Figure 3.3b) – in this unbiased scenario,

the advantage of the STDP model with theta phase precession was modest

relative to the same model without phase precession (R2 = 0.99± 0.01 vs.

R2 = 0.96± 0.01).

Examining the activity of CA1 cells in the two-room open field environment,

I found an increase in the eccentricity of fields close to the walls (Figure 3.3c &

d; average eccentricity of STDP successor features near vs. far from wall: 0.57±

0.06 vs. 0.33± 0.07). In particular, this increased eccentricity is facilitated by

a shorter field width along the axis perpendicular to the wall (Figure 3.3e), an

effect observed experimentally in rodent place cells (Tanni et al. 2021). This

increased eccentricity of cells near the wall remained when the behavioural

bias to follow walls was removed (Figure 3.3d; average eccentricity with vs.

without wall bias: 0.57± 0.06 vs. 0.54± 0.06), thus indicating it is primarily

caused by the inherent bias imposed on behaviour by extended walls rather

than an explicit policy bias. Note that the ellipse fitting algorithm accounts

for portions of the field that have been cut off by environmental boundaries

(see Appendix C & Figure 3.3c), and so this effect is not simply a product of

basis features being occluded by walls.

In a similar fashion, the bias in the motion model used here - which is

predisposed to move between the two rooms - resulted in a shift in STDP

successor feature peaks towards the doorway (Figure 3.3f & g; inwards shift in

metres for STDP successor features near vs. far from doorway: 0.15± 0.06 vs.

0.04± 0.05; with doorway bias turned off: 0.05± 0.08 vs. 0.04± 0.05). At the
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level of individual cells this was visible as an increased propensity for fields to

extend into the neighbouring room after learning (Figure 3.3h). Hence, although

basis features were initialised as two approximately non-overlapping populations

– with only a small proportion of cells near the doorway extending into the

neighbouring room – after learning many cells bind to those on the other side of

the doorway, causing their place fields to diffuse through the doorway and into

to the other room (Figure 3.3f). This shift could partially explain why place cell

activity is found to cluster around doorways (Spiers et al. 2015) and rewarded

locations (Dupret et al. 2010) in electrophysiological experiments. Equally

it is plausible that a similar effect might underlie experimental observations

that neural representations in multi-compartment environments typically begin

heavily fragmented by boundaries and walls but, over time, adapt to form a

smooth global representations (e.g., as observed in grid cells by Carpenter et al.

(2015)).

3.2.3 Anatomical Segregation Supports Multiscale Pre-

dictive Maps
The final investigation concerned whether the STDP learning rule was able

to form successor representation-like connections between basis features of

different scales. Recent experimental work has highlighted that place fields

form a multiscale representation of space, which is particularly noticeable in

larger environments (Tanni et al. 2021; Eliav et al. 2021), such as the one

modelled here. Such multiscale spatial representations have been hypothesised

to act as a substrate for learning successor features with different time horizons

– large scale place fields are able to make predictions of future location across

longer time horizons, whereas place cells with smaller fields are better placed

to make temporally fine-grained predictions. Agents could use such a set of

multiscale successor features to plan actions at different levels of temporal

abstraction, or predict precisely which states they are likely to encounter soon

(Momennejad et al. 2018). Despite this, what is not known is whether different

sized place fields will form associations when subject to STDP coordinated by
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Basis Feature, f(x)
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(x) ̃
<latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit>

 ̃
<latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit> Δ = -0.38±0.03 m, = 0.24±0.07

Basis Feature, f(x) side profile:
f(x)

= skewnessΔ = shift 
1D loop

(x) 
<latexit sha1_base64="mu2hKc93Hy8VvXe9klZVxCQ67Bs=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgaUnWytZb0YvHCtYW2qVk02wbms0uSVYoS/+CFw+KePUPefPfmG0rqOiDgcd7M8zMC1PBtUHowymtrK6tb5Q3K1vbO7t71f2DO51kirI2TUSiuiHRTHDJ2oYbwbqpYiQOBeuEk6vC79wzpXkib800ZUFMRpJHnBJTSP1U80G1htyzOrpADYhc3/M87Fly7jewjyF20Rw1sERrUH3vDxOaxUwaKojWPYxSE+REGU4Fm1X6mWYpoRMyYj1LJYmZDvL5rTN4YpUhjBJlSxo4V79P5CTWehqHtjMmZqx/e4X4l9fLTNQIci7TzDBJF4uiTECTwOJxOOSKUSOmlhCquL0V0jFRhBobT8WG8PUp/J/ceS5GLr6p15qXyzjK4Agcg1OAgQ+a4Bq0QBtQMAYP4Ak8O7Hz6Lw4r4vWkrOcOQQ/4Lx9Aof/jo8=</latexit><latexit sha1_base64="mu2hKc93Hy8VvXe9klZVxCQ67Bs=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgaUnWytZb0YvHCtYW2qVk02wbms0uSVYoS/+CFw+KePUPefPfmG0rqOiDgcd7M8zMC1PBtUHowymtrK6tb5Q3K1vbO7t71f2DO51kirI2TUSiuiHRTHDJ2oYbwbqpYiQOBeuEk6vC79wzpXkib800ZUFMRpJHnBJTSP1U80G1htyzOrpADYhc3/M87Fly7jewjyF20Rw1sERrUH3vDxOaxUwaKojWPYxSE+REGU4Fm1X6mWYpoRMyYj1LJYmZDvL5rTN4YpUhjBJlSxo4V79P5CTWehqHtjMmZqx/e4X4l9fLTNQIci7TzDBJF4uiTECTwOJxOOSKUSOmlhCquL0V0jFRhBobT8WG8PUp/J/ceS5GLr6p15qXyzjK4Agcg1OAgQ+a4Bq0QBtQMAYP4Ak8O7Hz6Lw4r4vWkrOcOQQ/4Lx9Aof/jo8=</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit>

TD successor feature, (x) 
<latexit sha1_base64="mu2hKc93Hy8VvXe9klZVxCQ67Bs=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgaUnWytZb0YvHCtYW2qVk02wbms0uSVYoS/+CFw+KePUPefPfmG0rqOiDgcd7M8zMC1PBtUHowymtrK6tb5Q3K1vbO7t71f2DO51kirI2TUSiuiHRTHDJ2oYbwbqpYiQOBeuEk6vC79wzpXkib800ZUFMRpJHnBJTSP1U80G1htyzOrpADYhc3/M87Fly7jewjyF20Rw1sERrUH3vDxOaxUwaKojWPYxSE+REGU4Fm1X6mWYpoRMyYj1LJYmZDvL5rTN4YpUhjBJlSxo4V79P5CTWehqHtjMmZqx/e4X4l9fLTNQIci7TzDBJF4uiTECTwOJxOOSKUSOmlhCquL0V0jFRhBobT8WG8PUp/J/ceS5GLr6p15qXyzjK4Agcg1OAgQ+a4Bq0QBtQMAYP4Ak8O7Hz6Lw4r4vWkrOcOQQ/4Lx9Aof/jo8=</latexit><latexit sha1_base64="mu2hKc93Hy8VvXe9klZVxCQ67Bs=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgaUnWytZb0YvHCtYW2qVk02wbms0uSVYoS/+CFw+KePUPefPfmG0rqOiDgcd7M8zMC1PBtUHowymtrK6tb5Q3K1vbO7t71f2DO51kirI2TUSiuiHRTHDJ2oYbwbqpYiQOBeuEk6vC79wzpXkib800ZUFMRpJHnBJTSP1U80G1htyzOrpADYhc3/M87Fly7jewjyF20Rw1sERrUH3vDxOaxUwaKojWPYxSE+REGU4Fm1X6mWYpoRMyYj1LJYmZDvL5rTN4YpUhjBJlSxo4V79P5CTWehqHtjMmZqx/e4X4l9fLTNQIci7TzDBJF4uiTECTwOJxOOSKUSOmlhCquL0V0jFRhBobT8WG8PUp/J/ceS5GLr6p15qXyzjK4Agcg1OAgQ+a4Bq0QBtQMAYP4Ak8O7Hz6Lw4r4vWkrOcOQQ/4Lx9Aof/jo8=</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit>

Δ = -0.28±0.00 m, = 0.39±0.01

<latexit sha1_base64="HqwzpG3SRQJK45cMgR0BNMAjgUw=">AAAB9HicbZDLSsNAGIUn9VbjpVWXbgaLoJuS9JZ2ZUEElxVsK7ShTCaTdujk4sykUEKfw40LRdz6Ar6FOx/Bt3DaFPF2YODjnP9nfo4TMSqkYbxrmZXVtfWN7Ka+tb2zm8vv7XdEGHNM2jhkIb9xkCCMBqQtqWTkJuIE+Q4jXWd8Ps+7E8IFDYNrOY2I7aNhQD2KkVSW3ZeUuSTp+/FsUB7kC0axVK5algn/glk0Fio0cx9np/rrRWuQf+u7IY59EkjMkBA904iknSAuKWZkpvdjQSKEx2hIegoD5BNhJ4ujZ/BYOS70Qq5eIOHC/b6RIF+Iqe+oSR/Jkfidzc3/sl4svbqd0CCKJQlw+pEXMyhDOG8AupQTLNlUAcKcqlshHiGOsFQ96YsSGobZqFowhXplCbXGVwmdUtGsFStXqo0KSJUFh+AInAATWKAJLkELtAEGt+AOPIBHbaLda0/aczqa0ZY7B+CHtJdPGUOVew==</latexit>

µ̃3

<latexit sha1_base64="HqwzpG3SRQJK45cMgR0BNMAjgUw=">AAAB9HicbZDLSsNAGIUn9VbjpVWXbgaLoJuS9JZ2ZUEElxVsK7ShTCaTdujk4sykUEKfw40LRdz6Ar6FOx/Bt3DaFPF2YODjnP9nfo4TMSqkYbxrmZXVtfWN7Ka+tb2zm8vv7XdEGHNM2jhkIb9xkCCMBqQtqWTkJuIE+Q4jXWd8Ps+7E8IFDYNrOY2I7aNhQD2KkVSW3ZeUuSTp+/FsUB7kC0axVK5algn/glk0Fio0cx9np/rrRWuQf+u7IY59EkjMkBA904iknSAuKWZkpvdjQSKEx2hIegoD5BNhJ4ujZ/BYOS70Qq5eIOHC/b6RIF+Iqe+oSR/Jkfidzc3/sl4svbqd0CCKJQlw+pEXMyhDOG8AupQTLNlUAcKcqlshHiGOsFQ96YsSGobZqFowhXplCbXGVwmdUtGsFStXqo0KSJUFh+AInAATWKAJLkELtAEGt+AOPIBHbaLda0/aczqa0ZY7B+CHtJdPGUOVew==</latexit>

µ̃3

<latexit sha1_base64="HqwzpG3SRQJK45cMgR0BNMAjgUw=">AAAB9HicbZDLSsNAGIUn9VbjpVWXbgaLoJuS9JZ2ZUEElxVsK7ShTCaTdujk4sykUEKfw40LRdz6Ar6FOx/Bt3DaFPF2YODjnP9nfo4TMSqkYbxrmZXVtfWN7Ka+tb2zm8vv7XdEGHNM2jhkIb9xkCCMBqQtqWTkJuIE+Q4jXWd8Ps+7E8IFDYNrOY2I7aNhQD2KkVSW3ZeUuSTp+/FsUB7kC0axVK5algn/glk0Fio0cx9np/rrRWuQf+u7IY59EkjMkBA904iknSAuKWZkpvdjQSKEx2hIegoD5BNhJ4ujZ/BYOS70Qq5eIOHC/b6RIF+Iqe+oSR/Jkfidzc3/sl4svbqd0CCKJQlw+pEXMyhDOG8AupQTLNlUAcKcqlshHiGOsFQ96YsSGobZqFowhXplCbXGVwmdUtGsFStXqo0KSJUFh+AInAATWKAJLkELtAEGt+AOPIBHbaLda0/aczqa0ZY7B+CHtJdPGUOVew==</latexit>

µ̃3

STDP successor feature, 

no-θ(x) ̃
<latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit>

 ̃
<latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit>

Δ = -0.05±0.07 m, = 0.00±0.08
<latexit sha1_base64="HqwzpG3SRQJK45cMgR0BNMAjgUw=">AAAB9HicbZDLSsNAGIUn9VbjpVWXbgaLoJuS9JZ2ZUEElxVsK7ShTCaTdujk4sykUEKfw40LRdz6Ar6FOx/Bt3DaFPF2YODjnP9nfo4TMSqkYbxrmZXVtfWN7Ka+tb2zm8vv7XdEGHNM2jhkIb9xkCCMBqQtqWTkJuIE+Q4jXWd8Ps+7E8IFDYNrOY2I7aNhQD2KkVSW3ZeUuSTp+/FsUB7kC0axVK5algn/glk0Fio0cx9np/rrRWuQf+u7IY59EkjMkBA904iknSAuKWZkpvdjQSKEx2hIegoD5BNhJ4ujZ/BYOS70Qq5eIOHC/b6RIF+Iqe+oSR/Jkfidzc3/sl4svbqd0CCKJQlw+pEXMyhDOG8AupQTLNlUAcKcqlshHiGOsFQ96YsSGobZqFowhXplCbXGVwmdUtGsFStXqo0KSJUFh+AInAATWKAJLkELtAEGt+AOPIBHbaLda0/aczqa0ZY7B+CHtJdPGUOVew==</latexit>

µ̃3no-θ(x) ̃
<latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit>

 ̃
<latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit>

R2(  ,  ) = 0.98 
<latexit sha1_base64="mu2hKc93Hy8VvXe9klZVxCQ67Bs=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgaUnWytZb0YvHCtYW2qVk02wbms0uSVYoS/+CFw+KePUPefPfmG0rqOiDgcd7M8zMC1PBtUHowymtrK6tb5Q3K1vbO7t71f2DO51kirI2TUSiuiHRTHDJ2oYbwbqpYiQOBeuEk6vC79wzpXkib800ZUFMRpJHnBJTSP1U80G1htyzOrpADYhc3/M87Fly7jewjyF20Rw1sERrUH3vDxOaxUwaKojWPYxSE+REGU4Fm1X6mWYpoRMyYj1LJYmZDvL5rTN4YpUhjBJlSxo4V79P5CTWehqHtjMmZqx/e4X4l9fLTNQIci7TzDBJF4uiTECTwOJxOOSKUSOmlhCquL0V0jFRhBobT8WG8PUp/J/ceS5GLr6p15qXyzjK4Agcg1OAgQ+a4Bq0QBtQMAYP4Ak8O7Hz6Lw4r4vWkrOcOQQ/4Lx9Aof/jo8=</latexit><latexit sha1_base64="mu2hKc93Hy8VvXe9klZVxCQ67Bs=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgaUnWytZb0YvHCtYW2qVk02wbms0uSVYoS/+CFw+KePUPefPfmG0rqOiDgcd7M8zMC1PBtUHowymtrK6tb5Q3K1vbO7t71f2DO51kirI2TUSiuiHRTHDJ2oYbwbqpYiQOBeuEk6vC79wzpXkib800ZUFMRpJHnBJTSP1U80G1htyzOrpADYhc3/M87Fly7jewjyF20Rw1sERrUH3vDxOaxUwaKojWPYxSE+REGU4Fm1X6mWYpoRMyYj1LJYmZDvL5rTN4YpUhjBJlSxo4V79P5CTWehqHtjMmZqx/e4X4l9fLTNQIci7TzDBJF4uiTECTwOJxOOSKUSOmlhCquL0V0jFRhBobT8WG8PUp/J/ceS5GLr6p15qXyzjK4Agcg1OAgQ+a4Bq0QBtQMAYP4Ak8O7Hz6Lw4r4vWkrOcOQQ/4Lx9Aof/jo8=</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit>

 ̃
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STDP successor feature, (x) ̃
<latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit>

 ̃
<latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit>

(x) 
<latexit sha1_base64="mu2hKc93Hy8VvXe9klZVxCQ67Bs=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgaUnWytZb0YvHCtYW2qVk02wbms0uSVYoS/+CFw+KePUPefPfmG0rqOiDgcd7M8zMC1PBtUHowymtrK6tb5Q3K1vbO7t71f2DO51kirI2TUSiuiHRTHDJ2oYbwbqpYiQOBeuEk6vC79wzpXkib800ZUFMRpJHnBJTSP1U80G1htyzOrpADYhc3/M87Fly7jewjyF20Rw1sERrUH3vDxOaxUwaKojWPYxSE+REGU4Fm1X6mWYpoRMyYj1LJYmZDvL5rTN4YpUhjBJlSxo4V79P5CTWehqHtjMmZqx/e4X4l9fLTNQIci7TzDBJF4uiTECTwOJxOOSKUSOmlhCquL0V0jFRhBobT8WG8PUp/J/ceS5GLr6p15qXyzjK4Agcg1OAgQ+a4Bq0QBtQMAYP4Ak8O7Hz6Lw4r4vWkrOcOQQ/4Lx9Aof/jo8=</latexit><latexit sha1_base64="mu2hKc93Hy8VvXe9klZVxCQ67Bs=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgaUnWytZb0YvHCtYW2qVk02wbms0uSVYoS/+CFw+KePUPefPfmG0rqOiDgcd7M8zMC1PBtUHowymtrK6tb5Q3K1vbO7t71f2DO51kirI2TUSiuiHRTHDJ2oYbwbqpYiQOBeuEk6vC79wzpXkib800ZUFMRpJHnBJTSP1U80G1htyzOrpADYhc3/M87Fly7jewjyF20Rw1sERrUH3vDxOaxUwaKojWPYxSE+REGU4Fm1X6mWYpoRMyYj1LJYmZDvL5rTN4YpUhjBJlSxo4V79P5CTWehqHtjMmZqx/e4X4l9fLTNQIci7TzDBJF4uiTECTwOJxOOSKUSOmlhCquL0V0jFRhBobT8WG8PUp/J/ceS5GLr6p15qXyzjK4Agcg1OAgQ+a4Bq0QBtQMAYP4Ak8O7Hz6Lw4r4vWkrOcOQQ/4Lx9Aof/jo8=</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit>

0 x / m 5TD successor feature, (x) 
<latexit sha1_base64="mu2hKc93Hy8VvXe9klZVxCQ67Bs=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgaUnWytZb0YvHCtYW2qVk02wbms0uSVYoS/+CFw+KePUPefPfmG0rqOiDgcd7M8zMC1PBtUHowymtrK6tb5Q3K1vbO7t71f2DO51kirI2TUSiuiHRTHDJ2oYbwbqpYiQOBeuEk6vC79wzpXkib800ZUFMRpJHnBJTSP1U80G1htyzOrpADYhc3/M87Fly7jewjyF20Rw1sERrUH3vDxOaxUwaKojWPYxSE+REGU4Fm1X6mWYpoRMyYj1LJYmZDvL5rTN4YpUhjBJlSxo4V79P5CTWehqHtjMmZqx/e4X4l9fLTNQIci7TzDBJF4uiTECTwOJxOOSKUSOmlhCquL0V0jFRhBobT8WG8PUp/J/ceS5GLr6p15qXyzjK4Agcg1OAgQ+a4Bq0QBtQMAYP4Ak8O7Hz6Lw4r4vWkrOcOQQ/4Lx9Aof/jo8=</latexit><latexit sha1_base64="mu2hKc93Hy8VvXe9klZVxCQ67Bs=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgaUnWytZb0YvHCtYW2qVk02wbms0uSVYoS/+CFw+KePUPefPfmG0rqOiDgcd7M8zMC1PBtUHowymtrK6tb5Q3K1vbO7t71f2DO51kirI2TUSiuiHRTHDJ2oYbwbqpYiQOBeuEk6vC79wzpXkib800ZUFMRpJHnBJTSP1U80G1htyzOrpADYhc3/M87Fly7jewjyF20Rw1sERrUH3vDxOaxUwaKojWPYxSE+REGU4Fm1X6mWYpoRMyYj1LJYmZDvL5rTN4YpUhjBJlSxo4V79P5CTWehqHtjMmZqx/e4X4l9fLTNQIci7TzDBJF4uiTECTwOJxOOSKUSOmlhCquL0V0jFRhBobT8WG8PUp/J/ceS5GLr6p15qXyzjK4Agcg1OAgQ+a4Bq0QBtQMAYP4Ak8O7Hz6Lw4r4vWkrOcOQQ/4Lx9Aof/jo8=</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit><latexit sha1_base64="tlDnFFyFBoXV8BuX12N7gfap0pE=">AAAB63icbVDLSgMxFM3UV62vqks3wSK4GpKxMnVXdOOygrWFdiiZNNOGZjJDkhFK6S+4caGIW3/InX9jZlrB14ELh3Pu5d57wlRwbRD6cEorq2vrG+XNytb2zu5edf/gTieZoqxNE5Gobkg0E1yytuFGsG6qGIlDwTrh5Cr3O/dMaZ7IWzNNWRCTkeQRp8TkUj/VfFCtIfesji5QAyLX9zwPe5ac+w3sY4hdVKAGlmgNqu/9YUKzmElDBdG6h1FqghlRhlPB5pV+pllK6ISMWM9SSWKmg1lx6xyeWGUIo0TZkgYW6veJGYm1nsah7YyJGevfXi7+5/UyEzWCGZdpZpiki0VRJqBJYP44HHLFqBFTSwhV3N4K6ZgoQo2Np1KEsPgU/iVfIdx5LkYuvqnXmpfLOMrgCByDU4CBD5rgGrRAG1AwBg/gCTw7sfPovDivi9aSs5w5BD/gvH0ChqmOjA==</latexit>

no-θ(x) ̃
<latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit>

 ̃
<latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit>

STDP successor feature, no-θ(x) ̃
<latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="sOIk3m62ZiPta3CxJeQgCDAsPLM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQtKHbXZFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984fQgqeuDC4Zx7ufeeUDCqtON8WGvrG5tb24Wd4u7e/sFh6ei4q9JMYtLBKUtlP0SKMMpJR1PNSF9IgpKQkV44uZ77vXsiFU35nZ4KEiRoxGlMMdJG8n1NWURyXyg6G5bKju01GpVmHTp27dLzvIohVbfq1F3o2s4CZbBCe1h696MUZwnhGjOk1MB1hA5yJDXFjMyKfqaIQHiCRmRgKEcJUUG+uHkGz40SwTiVpriGC/X7RI4SpaZJaDoTpMfqtzcX//IGmY6bQU65yDTheLkozhjUKZwHACMqCdZsagjCkppbIR4jibA2MRVNCF+fwv9Jt2K7ju3e1sqtq1UcBXAKzsAFcEEDtMANaIMOwECAB/AEnq3MerRerNdl65q1mjkBP2C9fQIOrJJa</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit><latexit sha1_base64="PZT9cZzSvEIyZopWpqxMe1QyGE4=">AAAB83icbVDLSsNAFJ34rPVVdelmsAiuQtKHbXdFNy4r2Ac0oUwmk3boZDLMTIQS+htuXCji1p9x5984TSv4OnDhcM693HtPIBhV2nE+rLX1jc2t7cJOcXdv/+CwdHTcU0kqMenihCVyECBFGOWkq6lmZCAkQXHASD+YXi/8/j2Riib8Ts8E8WM05jSiGGkjeZ6mLCSZJxSdj0plx241GpVmHTp27bLValUMqbpVp+5C13ZylMEKnVHp3QsTnMaEa8yQUkPXEdrPkNQUMzIveqkiAuEpGpOhoRzFRPlZfvMcnhslhFEiTXENc/X7RIZipWZxYDpjpCfqt7cQ//OGqY6afka5SDXheLkoShnUCVwEAEMqCdZsZgjCkppbIZ4gibA2MRXzEJafwr/kK4RexXYd272tldtXqzgK4BScgQvgggZogxvQAV2AgQAP4Ak8W6n1aL1Yr8vWNWs1cwJ+wHr7BA1Wklc=</latexit>
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Figure 3.3: Place cells (aka. successor features) in my STDP model show
behaviourally biased skewing resembling experimental observations and successor
representation predictions. a In the loop maze (motion left-to-right) STDP place cells
skew and shift backwards, and strongly resemble place cells obtained via temporal
difference learning. This is not the case when theta phase precession is absent. b
In the corridor maze, where travel in either direction is equally likely, place fields
diffuse in both directions due to the unbiased movement policy. c In the 2D maze,
place cells (of geodesic Gaussian basis features) near the wall elongate along the wall
axis (dashed line shows best fitting ellipse, angle construct show the ellipse-to-wall
angle). d Place cells near walls have higher elliptical eccentricity than those near the
centre of the environments. This increase remains even when the movement policy
bias to follow walls is absent. e The eccentricity for fields near the walls is facilitated
by an increase in the length of the place field along an axis parallel to the wall (ϕ
close to zero). (Continued on next page...)
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Figure 3.3: (...continued from previous page) f Place cells near the doorway cluster
towards it and expand through the doorway relative to their parent basis features. g
The shift of place fields near the doorway towards the doorway is significant relative
to place fields near the centre and disappears when the behavioural bias to cross
doorways is absent. h The shift of place fields towards the doorway manifests as an
increase in density of cells near the doorway after exploration.

phase precession and what effect this would have on the resulting successor

features. Hypothetically, consider a small basis feature cell with a receptive

field entirely encompassed by that of a larger basis cell with no theta phase

offset between the entry points of both fields. A potential consequence of theta

phase precession is that the cell with the smaller field would phase precess

faster through the theta cycle than the other cell - initially it would fire later

in the theta cycle than the cell with a larger field, but as the animal moves

towards the end of the small basis field it would fire earlier. These periods

of potentiation and depression instigated by STDP could act against each

other, and the extent to which they cancel each other out would depend on the

relative placement of the two fields, their size difference, and the parameters of

the learning rule. To test this, I simulated an agent, learning according to my

STDP model in the circular track environment, with, simultaneously, three sets

of differently sized basis features (σ = 0.5, 1.0 and 1.5 m, Figure 3.4a). Such

ordered variation in field size has been observed along the dorso-ventral axis

of the hippocampus (Kjelstrup et al. 2008; Strange et al. 2014); Figure 3.4b),

and has been theorised to facilitate successor representation predictions across

multiple time-scales (Stachenfeld et al. 2017; Momennejad et al. 2018).

When I trained the STDP model on a population of homogeneously-

distributed multiscale basis features, the resulting weight matrix displayed

binding across the different sizes regardless of the scale difference (Figure 3.4c

top). This in turn leads to a population of downstream successor features

with the same redundantly large scale (Figure 3.4c bottom). The negative

interaction between different sized fields was not sufficient to prevent binding

and, as such, the place fields of small features are dominated by contributions
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from bindings to larger basis features. Conversely, when these multiscale

basis features were ordered along the dorso-ventral axis to prevent binding

between the different scales – cells of the three scales were processed separately,

Figure 3.4d top) – the multiscale structure is preserved in the resulting successor

features (Figure 3.4d bottom). I thus propose that place cell size can act as a

proxy for the predictive time horizon, τ – also called the discount parameter,

γ = e− dt
τ , in discrete Markov Decision Processes. However for this effect to be

meaningful, plasticity between cells of different scales must be minimised to

prevent short timescales from being overwritten by longer ones, this segregation

may plausibly be achieved by the observed size ordering along the hippocampal

dorsal-ventral axis.
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Figure 3.4: Multiscale successor representations are stored by place cells with
multi-sized place fields but only when sizes are segregated along the dorso-ventral
axis. a An agent explores a 1D loop maze with 150 places cells of different sizes (50
small, 50 medium, and 50 large) evenly distributed along the track. b In rodent
hippocampus place cells are observed to be ordered along the dorso-ventral axis
according to their field size. c When cells with different field sizes are homogeneously
distributed throughout hippocampus all postsynaptic successor features can bind to
all presynpatic basis features, regardless of their size (top). Short timescale successor
representations are overwritten, creating three equivalent sets of redundantly large
scale successor features (bottom). d Ordering cells leads to anatomical segregation;
postsynaptic successor features can only bind to basis features in the same size range
(off-diagonal block elements are zero) preventing cells with different size fields from
binding. Now, three dissimilar sets of successor features emerge with different length
scales, corresponding to successor features of different discount time horizons.
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3.3 Discussion: Bridging Synaptic Plasticity

and Reinforcement Learning
Successor representations store long-run transition statistics and allow for rapid

prediction of future states (Dayan 1993) - they are hypothesised to play a central

role in mammalian navigation strategies (Stachenfeld et al. 2017; Cothi et al.

2020b). It is shown that Hebbian learning between spiking neurons, resembling

the place fields found in CA3 and CA1, learns an accurate approximation to

the successor representation when these neurons undergo phase precession with

respect to the hippocampal theta rhythm. The approximation achieved by

STDP explains a large proportion of the variance in the TD successor matrix

and replicates hallmarks of successor representations (Stachenfeld et al. 2014;

Stachenfeld et al. 2017; Cothi et al. 2020b) such as behaviourally biased place

field skewing, elongation of place fields near walls, and clustering near doorways

in both one and two-dimensional environments.

That the predictive skew of place fields can be accomplished with a

STDP-type learning rule is a long-standing hypothesis; in fact, the authors that

originally reported this effect also proposed a STDP-type mechanism for learning

these fields (Mehta et al. 2000; Mehta 2001). Similarly, the possible accelerating

effect of theta phase precession on sequence learning has also been described in

a number of previous works (Jensen et al. 1996; Skaggs et al. 1996b; Koene et al.

2003; Reifenstein et al. 2021). Until recently (Fang et al. 2022; Bono et al. 2021),

SR models have largely not connected with this literature: they either remain

agnostic to the learning rule or assume temporal difference learning (which has

been well-mapped onto striatal mechanisms (Schultz et al. 1997; Seymour et al.

2004), but it is unclear how this is implemented in hippocampus) (Stachenfeld

et al. 2014; Stachenfeld et al. 2017; Cothi et al. 2020b; Geerts et al. 2020; Vértes

et al. 2019). Thus, one contribution of this chapter is to quantitatively and

qualitatively compare theta-augmented STDP to temporal difference learning,

and demonstrate where these functionally overlap. This explicit link permits

some insights about the physiology, such as the observation that the biologically
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observed parameters for phase precession and STDP resemble those that are

optimal for learning the SR (Figure C.3), and that the topographic organisation

of place cell sizes is useful for learning representations over multiple discount

timescales (Figure 3.4). It also permits some insights for RL, such as that

the approximate SR learned with theta-augmented STDP, while provably

theoretically different from TD (Appendix C.9), is sufficient to capture key

qualitative phenomena.

Theta phase precession has a dual effect not only allowing learning by

compressing trajectories to within STDP timescales but also accelerating

convergence to a stable representation by arranging the spikes from cells

along the current trajectory to arrive in the order those cells are actually

encountered (Jensen et al. 1996; Koene et al. 2003). Without theta phase

precession, STDP fails to learn a successor representation reflecting the current

policy unless that policy is approximately unbiased. Further, by instantiating

a population of place cells with multiple scales I show that topographical

ordering of these place cells by size along the dorso-ventral hippocampal axis is

a necessary feature to prevent small discount timescale successor representations

from being overwritten by longer ones. Last, performing a grid search over

STDP learning parameters, I show that those values selected by evolution are

approximately optimal for learning successor representations. This finding is

compatible with the idea that the necessity to rapidly learn predictive maps

by STDP has been a primary factor driving the evolution of synaptic learning

rules in hippocampus.

While the model is biologically plausible in several respects, there remain a

number of aspects of the biology that are not interfaced with in this work, such

as different cell types, interneurons and membrane dynamics. Further, I do not

consider anything beyond the most simple model of phase precession, which

directly results in theta sweeps in lieu of them developing and synchronising

across place cells over time (Feng et al. 2015). Rather, the philosophy here is

to reconsider the most pressing issues with the standard model of predictive
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map learning in the context of hippocampus (e.g., the absence of dopaminergic

error signals in CA1 and the inadequacy of synaptic plasticity timescales). This

minimalism is believed to be helpful, both for interpreting the results presented

here and providing a foundation on which further work may examine these

biological intricacies, such as whether the model’s theta sweeps can alternately

represent future routes (Kay et al. 2020) e.g., by the inclusion of attractor

dynamics (Chu et al. 2022). Still, I show this simple model is robust to the

observed variation in phase offsets between phase precessing CA3 and CA1

place cells across different stages of the theta cycle (Mizuseki et al. 2012). In

particular, this phase offset is most pronounced as animals enter a field (∼ 90◦)

and is almost completely reduced by the time they leave it (∼ 90◦) (Figure 3.2,

figure supplement 4g). Essentially the model hypothesises that the majority

of plasticity induced by STDP and theta phase precession will take place in

the latter part of place fields, equating to earlier theta phases. Notably, this is

in keeping with experimental data showing enhanced coupling between CA3

and CA1 in these early theta phases (Colgin et al. 2009; Hasselmo et al. 2002).

However, as the simulations show (Figure 3.2, figure supplement 4g), even if

these assumptions do not hold true, the model is sufficiently robust to generate

SR equivalent weight matrices for a range of possible phase offsets between

CA3 and CA1.

This model extends previous work – which required successor features to

recursively expand in order to make long range predictions (e.g. as demonstrated

in Brea et al. (2016) and Bono et al. (2021)) – by exploiting the existence of

temporally compressed theta sweeps (O’Keefe et al. 1993; Skaggs et al. 1996b),

allowing place cells with distant fields to bind directly without intermediaries

or ‘bootstrapping’. This configuration yields several advantages. First, learning

with theta sweeps converges considerably faster than without them. Biologically,

it is likely that successor feature learning via Hebbian learning alone (without

theta precession) would be too slow to account for the rapid stabilisation of

place cells in new environments at behavioural time scales (Bittner et al. 2017) –
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Dong et al. observed place fields in CA1 to increase in width for approximately

the first 10 laps around a 3 m track (Dong et al. 2021). This timescale is well

matched by my model with theta sweeps in which CA1 place cells reach 75%

of their final extent after 5 minutes (or 9.6 laps) of exploration on a 5m track

but is markedly slower without theta sweeps.

Second, as well as extending previous work to large two-dimensional

environments and complex movement policies this model also uses realistic

population codes of overlapping Gaussian features. These naturally present a

hard problem for models of spiking Hebbian learning since, in the absence of

theta sweeps, the order in which features are encountered is not encoded reliably

in the relative timing or order of their spikes at synaptic timescales. Theta

sweeps address this by tending to sequence spikes according to the order in

which their originating fields are encountered. Indeed, preliminary experiments

show that when theta sweeps are absent the STDP successor features show

little similarity to the TD successor features. This work is thus particularly

relevant in light of a recent trend to focus on biologically plausible features for

reinforcement learning (Gustafson et al. 2011; Cothi et al. 2020b).

Other contemporary theoretical works have made progress on biological

mechanisms for implementing the successor representation algorithm using

somewhat different but complementary approaches. Of particular note are

the works by Fang et al. Fang et al. (2022), who show a recurrent network

with weights trained via a Hebbian-like learning rule converges to the successor

representation in steady state, and Bono et al. Bono et al. (2021) who derive a

learning rule for a spiking feed-forward network which learns the SR of one-hot

features by bootstrapping associations across time (see also Brea et al. (2016)).

Combined, the above models, as well as this work suggest there may be multiple

means of calculating successor features in biological circuits without requiring

a direct implementation of temporal difference learning.

This theory makes the prediction that theta contributes to learning

predictive representations, but is not necessary to maintain them. Thus,
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inhibiting theta oscillations during exposure to a novel environment should

impact the formation of successor features (e.g., asymmetric backwards skew

of place fields) and subsequent memory-guided navigation. However, inhibiting

theta in a familiar environment in which experience-dependent changes have

already occurred should have little effect on the place fields: that is, some

asymmetric backwards skew of place fields should be intact even with theta

oscillations disrupted. To my knowledge this has not been directly measured, but

there are some experiments that provide hints. Experimental work has shown

that power in the theta band increases upon exposure to novel environments

(Cavanagh et al. 2011) – this work suggests this is because theta phase precession

is critical for learning and updating stored predictive maps for spatial navigation.

Furthermore, it has been shown that place cell firing can remain broadly intact

in familiar environments even with theta oscillations disrupted by temporary

inactivation or cooling (Bolding et al. 2019; Petersen et al. 2020). It is worth

noting, however, that even with intact place fields, these theta disruptions

impair the ability of rodents to reach a hidden goal location that had already

been learned, suggesting theta oscillations play a role in navigation behaviours

even after initial learning (Bolding et al. 2019; Petersen et al. 2020). Other

work has also shown that muscimol inactivations to medial septum can disrupt

acquisition and retrieval of the memory of a hidden goal location (Chrobak

et al. 1989; Rashidy-Pour et al. 1996), although it is worth noting that these

papers use muscimol lesions, which Bolding and colleagues show also disrupt

place-related firing, not just theta precession.

The SR model has a number of connections to other models from the

computational hippocampal literature that bear on the interpretation of these

results. A long-standing property of computational models in the hippocampus

literature is a factorisation of spatial and reward representations (Redish et al.

1998; Burgess et al. 1997; Koene et al. 2003; Hasselmo et al. 2005; Erdem

et al. 2012), which permits spatial navigation to rapidly adapt to changing

goal locations. Even in RL, the SR is also not unique in factorising spatial and
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reward representations, as purely model-based approaches do this too (Dayan

1993; Sutton et al. 1998; Daw 2012). The SR occupies a much more narrow

niche, which is factorising reward from spatial representations while caching

long-term occupancy predictions (Dayan 1993; Gershman 2018). Thus, it may

be possible to retain some of the flexibility of model-based approaches while

retaining the rapid computation of model-free learning.

A number of other models describe how physiological and anatomical

properties of hippocampus may produce circuits capable of goal-directed spatial

navigation (Erdem et al. 2012; Redish et al. 1998; Koene et al. 2003). These

models adopt an approach more characteristic of model-based RL, searching

iteratively over possible directions or paths to a goal Erdem et al. (2012) or

replaying sequences to build an optimal transition model from which sampled

trajectories converge toward a goal Redish et al. (1998) (this model bears some

similarities to the SR that are explored by Fang et al. (2022), which shows

dynamics converge to SR under a similar form of learning). These models

rely on dynamics to compute the optimal trajectory, while the SR realises

the statistics of these dynamics in the rate code and can therefore adapt very

efficiently. Thus, the SR retains some efficiency benefits. These models are

very well-grounded in known properties of hippocampal physiology, including

theta precession and STDP, whereas until recently, SR models have enjoyed a

much looser affiliation with exact biological mechanisms. Thus, a primary goal

of this chapter is to explore how hippocampal physiological properties relate to

SR learning as well.

More generally, in principle, any form of sufficiently ordered and

compressed trajectory would allow STDP plasticity to approximate a successor

representation. Hippocampal replay is a well documented phenomena where

previously experienced trajectories are rapidly recapitulated during sharp-wave

ripple events (Wilson et al. 1994), within which spikes show a form of phase

precession relative to the ripple band oscillation (150-250Hz) (Bush et al. 2022).

Thus, my model might explain the abundance of sharp-wave ripples during early
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exposure to novel environments (Cheng et al. 2008) – when new ‘informative’

trajectories, for example those which lead to reward, are experienced it is

desirable to rapidly incorporate this information into the existing predictive

map (Mattar et al. 2018).

The distribution of place cell receptive field size in hippocampus is not

homogeneous. Instead, place field size grows smoothly along the longitudinal

axis (from very small in dorsal regions to very large in ventral regions). Why

this is the case is not clear – my model contributes by showing that, without

this ordering, large and small place cells would all bind via STDP, essentially

overwriting the short timescale successor representations learnt by small place

cells with long timescale successor representations. Topographically organising

place cells by size anatomically segregates place cells with fields of different

sizes, preserving the multiscale successor representations. Further, my results

exploring the effect of different phase offsets on STDP-successor learning

(Figure C.4g) suggest that the gradient of phase offsets observed along the

dorso-ventral axis (Lubenov et al. 2009; Patel et al. 2012) is insufficient to impair

the plasticity induced by STDP and phase precession. The premise that such

separation is needed to learn multiscale successor representations is compatible

with other theoretical accounts for this ordering. Specifically Momennejad and

Howard Momennejad et al. (2018) showed that exploiting multiscale successor

representations downstream, in order to recover information which is ‘lost’ in

the process of compiling state transitions into a single successor representation,

typically requires calculating the derivative of the successor representation with

respect to the discount parameter. This derivative calculation is significantly

easier if the cells – and therefore the successor representations – are ordered

smoothly along the hippocampal axis.

Work in control theory has shown that the difficult reinforcement learning

problem of finding an optimal policy and value function for a given environment

becomes tractable if the policy is constrained to be near a ‘default policy’

(Todorov 2009). When applied to spatial navigation, the optimal value function
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resembles the value function calculated using a successor representation for

the default policy. This solution allows for rapid adaptation to changes in the

reward structure since the successor matrix is fixed to the default policy and

need not be re-learnt even if the optimal policy changes. Building on this,

recent work suggested the goal of hippocampus is not to learn the successor

representation for the current policy but rather for a default diffusive policy

(Piray et al. 2021).

Indeed, I found that in the absence of theta sweeps, the STDP rule learns

a successor representation close to that of an unbiased policy, rather than the

current policy. This is because without theta-sweeps to order spikes along the

current trajectory, cells bind according to how overlapping their receptive fields

are, that is, according to how close they are under a ‘diffusive’ policy. In this

context it is interesting to note that a substantial proportion of CA3 place

cells do not exhibit significant phase precession (O’Keefe et al. 1993; Jeewajee

et al. 2014). One possibility is that these place cells with weak or absent phase

precession might plausibly contribute to learning a policy-independent ‘default

representation’, useful for rapid policy prediction when the reward structure of

an environment is changed. Simultaneously, theta precessing place cells may

learn a successor representation for the current (potentially biased) policy, in

total giving the animal access to both an off-policy-but-near-optimal value

function and an on-policy-but-suboptimal value function.

Finally, a comment is made on the approximate nature of the successor

representations learnt by my biologically plausible model. The STDP successor

features described here are unlikely to converge analytically to the TD successor

features. Potentially this implies that a value function calculated according

to Equation (C.28) would not be accurate and may prevent an agent from

acting optimally. There are several possible resolutions to this point. First, the

successor representation is unlikely to be a self contained reinforcement learning

system. In reality it likely interacts with other model-based or model-free

systems acting in other brain regions such as nucleus accumbens in striatum
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(Lisman et al. 2005). Plausibly errors in the successor features are corrected

for by counteracting adjustments in the reward weights implemented by some

downstream model-free error-based learning system. Alternatively, it is likely

that value function learnt by the brain is either fundamentally approximate

or uses an different, less tractable temporal discounting scheme. Ultimately,

although in principle specialised and expensive learning rules might be developed

to exactly replicate TD successor features in the brain, this may be undesirable

if a simple learning rule (STDP) is adequate in most circumstances. Indeed,

animals - including humans - are known to act sub-optimally (Zentall 2015;

Cothi et al. 2022b), perhaps in part because of a reliance on STDP learning

rules in order to learn long-range associations.





Chapter 4

A Biologically Plausible

Generative Model of the

Hippocampal Formation

Summary
Advances in generative models have recently revolutionized machine learning.

Meanwhile, in neuroscience, generative models have long been thought

fundamental to animal intelligence. Understanding the biological mechanisms

that support these processes promises to shed light on the relationship between

biological and artificial intelligence. In animals, the hippocampal formation is

thought to learn and use a generative model to support its role in spatial and

non-spatial memory. Here, a biologically plausible model of the hippocampal

formation tantamount to a Helmholtz machine is introduced that is applied to

a temporal stream of inputs. A novel component of the model is that fast theta-

band oscillations (5-10 Hz) gate the direction of information flow throughout the

network, training it akin to a high-frequency wake-sleep algorithm. The model

accurately infers the latent state of high-dimensional sensory environments

and generates realistic sensory predictions. Furthermore, it can learn to

path integrate by developing a ring attractor connectivity structure matching

previous theoretical proposals and flexibly transfer this structure between
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environments. Whereas many models trade-off biological plausibility with

generality, the model captures a variety of hippocampal cognitive functions

under one biologically plausible local learning rule.

4.1 Introduction: A Theta-Driven Generative

Model of the Hippocampus
Generative models seek to create new data samples which are similar to those

from the training set. To do so they must learn the probability distribution of the

training data, comprising a rich, generalisable and accurate model of the world.

Many of the recent advances in AI have involved types of generative models:

VAEs (Kingma et al. 2022), GANs (Goodfellow et al. 2014), diffusion models

(Sohl-Dickstein et al. 2015) and autoregressive models (Vaswani et al. 2017)

have seeded improvements in AI capabilities ranging from data compression

(Yang et al. 2022; George et al. 2019) to image generation (Ramesh et al. 2021)

and natural language (Bubeck et al. 2023). In neuroscience, the animal brain

has long been known to exploit generative models (Friston 2010; Gershman

2019). The ability to generate representative sensory data samples can be

used directly, for example during offline planning or memory recall. It can

also be used indirectly to aid training of inference networks with the goal

of processing rich, noisy and high dimensional streams of incoming sensory

stimuli, as discussed in the predictive coding literature (Rao et al. 1999). In a

sentence: “What I cannot create [generate], I do not understand [inference]”

(R. Feynman).

The hippocampal-entorhinal system (aka. hippocampal formation) – a

brain structure implicated in spatial (O’Keefe 1976) and non-spatial (Squire

1992) memory – provides a pertinent example. Its primary role seems to be

inference (Sanders et al. 2020): mapping sensory inputs into a robust and

decodable representation of state (grid cells (Hafting et al. 2005), place cells

(O’Keefe 1976) etc. (Moser et al. 2017)). A generative model is thought to have

a dual role in learning: supporting offline tasks such as route planning (Spiers
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<latexit sha1_base64="AjUVywHkE+0USeKRoRiSbdpl/98=">AAAB9HicbVDLSgMxFM3UV62vqjvdBItQN0NmsLbuCm5cuGjBPqAdSibNtKGZh0mmUId+gR/gxoUibv0J/8Cdf+EnmE4VfB0IHM65l3ty3IgzqRB6MzILi0vLK9nV3Nr6xuZWfnunKcNYENogIQ9F28WSchbQhmKK03YkKPZdTlvu6Gzmt8ZUSBYGl2oSUcfHg4B5jGClJafrYzWUXnJdVEfTXr6AzHLJsmwLIrNyatnlY01QyUaVCrRMlKJQzdffXy72bmq9/Gu3H5LYp4EiHEvZsVCknAQLxQin01w3ljTCZIQHtKNpgH0qnSQNPYWHWulDLxT6BQqm6veNBPtSTnxXT6Yhf3sz8T+vEyuv4iQsiGJFAzI/5MUcqhDOGoB9JihRfKIJJoLprJAMscBE6Z5yaQnzn8K/5KuEpm1aJyaq6zYQmCML9sEBKAILlEEVnIMaaAACrsAtuAcPxti4Mx6Np/loxvjc2QU/YDx/AIbIlYo=</latexit>

z(t)

= fixed = plastic
<latexit sha1_base64="VpFy6Uc0sCOlR6aYDWw+E27oa5k="></latexit>

�wpA
/ p � pA

wake
sleep

b

<latexit sha1_base64="O2tK95ylwqSp9cLjaLBCxWP9G2c=">AAAB+XicbVDLSgMxFM34rPU1Vly5CRbB1ZCpbW13FTcuK9gHtGXIpJk2NPMgyVTK0K0rP8CFmy4UceufuPNvTKcKvg4EDufcyz05bsSZVAi9G0vLK6tr65mN7ObW9s6uuZdryjAWhDZIyEPRdrGknAW0oZjitB0Jin2X05Y7upj7rTEVkoXBtZpEtOfjQcA8RrDSkmOaXR+rofSSGyeJnPPp1DHzyCqgcvEUQWQVq4UqKmpSqlSqWrEtlCJfy81u70sHd3XHfOv2QxL7NFCEYyk7NopUL8FCMcLpNNuNJY0wGeEB7WgaYJ/KXpImn8JjrfShFwr9AgVT9ftGgn0pJ76rJ9Ocv725+J/XiZVX6SUsiGJFA7I45MUcqhDOa4B9JihRfKIJJoLprJAMscBE6bKyaQmLn8K/5KuEZsGyyxa60m0gsEAGHIIjcAJscAZq4BLUQQMQMAYP4BE8GYkxM56Nl8XokvG5sw9+wHj9AH4Llx8=</latexit>wpA

= gated

<latexit sha1_base64="AoL+s4aK/6wFyYvelwV6dorWdv8=">AAAB+XicbVDLSgMxFM34rPU1Vly5CRbB1ZCpOm13RTcuFawK7TBk0kwbzDxIMpUydOvKD3DhpgtF3Pon7vwb0xkFXwcCh3Pu5Z4cP+FMKoTejZnZufmFxdJSeXlldW3d3KhcyDgVhLZJzGNx5WNJOYtoWzHF6VUiKA59Ti/96+OpfzmkQrI4OlejhLoh7kcsYAQrLXmm2Q2xGsggu/Gyvnc0HntmFVn2AXL2EURW3ant15qaHDQQcprQtlCOaqsyub0/3Lo79cy3bi8maUgjRTiWsmOjRLkZFooRTsflbippgsk17tOOphEOqXSzPPkY7mqlB4NY6BcpmKvfNzIcSjkKfT2Z5/ztTcX/vE6qgoabsShJFY1IcShIOVQxnNYAe0xQovhIE0wE01khGWCBidJllfMSip/Cv+SrhIuaZTsWOtNtIFCgBLbBDtgDNqiDFjgBp6ANCBiCB/AInozMmBjPxksxOmN87myCHzBePwBpIJcR</latexit>

wgB

Environment

= not gated

<latexit sha1_base64="aLvqxTj3YtxO/eWRnJRF0vsLb4M=">AAAB83icbVDLSgMxFM3UV1tfVZdugkVwIUOmr3EjFNy4rGAf0A4lk8m0oZkHSUYoQzdu/AM3LhRx259x59doOlXwdSBwOOde7slxY86kQujNyK2srq1v5AvFza3tnd3S3n5HRokgtE0iHomeiyXlLKRtxRSnvVhQHLicdt3JxcLv3lAhWRReq2lMnQCPQuYzgpWWBoMAq7H00xiez4alMjKrNrJrNYjMhl2p1u2M1OuWBS0TZSg3C3fe/P32tDUsvQ68iCQBDRXhWMq+hWLlpFgoRjidFQeJpDEmEzyifU1DHFDppFnmGTzWigf9SOgXKpip3zdSHEg5DVw9mWX87S3E/7x+ovwzJ2VhnCgakuUhP+FQRXBRAPSYoETxqSaYCKazQjLGAhOlaypmJSx/Cv+SrxI6FdNqmOhKt4HAEnlwCI7ACbCADZrgErRAGxAQg3vwCJ6MxHgwno2X5WjO+Nw5AD9gzD8AHs2VYA==</latexit>

p =

<latexit sha1_base64="JE30JNdcJRLBqPERThq7jNzYYNo="></latexit>

�wgA/B
/ g � gA/B

wake
sleep

<latexit sha1_base64="r/dKX4oXerWH/xpGZ0JSCpUjsa0=">AAAB83icbVDLSgMxFM3UV1tfVZdugkVwIUOmj6kboeDGZQX7gHYomUymDc08SDJCGbpx4x+4caGI2/6MO79G06mCrwOBwzn3ck+OG3MmFUJvRm5ldW19I18obm5t7+yW9vY7MkoEoW0S8Uj0XCwpZyFtK6Y47cWC4sDltOtOLhZ+94YKyaLwWk1j6gR4FDKfEay0NBgEWI2ln47g+WxYKiOzXm3YFoLIrFmNaqWuiV2xUb0GLRNlKDcLd978/fa0NSy9DryIJAENFeFYyr6FYuWkWChGOJ0VB4mkMSYTPKJ9TUMcUOmkWeYZPNaKB/1I6BcqmKnfN1IcSDkNXD2ZZfztLcT/vH6i/DMnZWGcKBqS5SE/4VBFcFEA9JigRPGpJpgIprNCMsYCE6VrKmYlLH8K/5KvEjoV07JNdKXbQGCJPDgER+AEWKABmuAStEAbEBCDe/AInozEeDCejZflaM743DkAP2DMPwD+I5VK</latexit>g =

<latexit sha1_base64="O2tK95ylwqSp9cLjaLBCxWP9G2c=">AAAB+XicbVDLSgMxFM34rPU1Vly5CRbB1ZCpbW13FTcuK9gHtGXIpJk2NPMgyVTK0K0rP8CFmy4UceufuPNvTKcKvg4EDufcyz05bsSZVAi9G0vLK6tr65mN7ObW9s6uuZdryjAWhDZIyEPRdrGknAW0oZjitB0Jin2X05Y7upj7rTEVkoXBtZpEtOfjQcA8RrDSkmOaXR+rofSSGyeJnPPp1DHzyCqgcvEUQWQVq4UqKmpSqlSqWrEtlCJfy81u70sHd3XHfOv2QxL7NFCEYyk7NopUL8FCMcLpNNuNJY0wGeEB7WgaYJ/KXpImn8JjrfShFwr9AgVT9ftGgn0pJ76rJ9Ocv725+J/XiZVX6SUsiGJFA7I45MUcqhDOa4B9JihRfKIJJoLprJAMscBE6bKyaQmLn8K/5KuEZsGyyxa60m0gsEAGHIIjcAJscAZq4BLUQQMQMAYP4BE8GYkxM56Nl8XokvG5sw9+wHj9AH4Llx8=</latexit>wpA

<latexit sha1_base64="3CIQO91JFskoBadPTIujFVzqyf0=">AAAB+XicbVDLSgMxFM34rPU1Vly5CRbB1ZDWtra7ihuXFewD2jJk0kwbmnmQZCpl6NaVH+DCTReKuPVP3Pk3pjMKvg4EDufcyz05TsiZVAi9G0vLK6tr65mN7ObW9s6uuZdrySAShDZJwAPRcbCknPm0qZjitBMKij2H07Yzvlj47QkVkgX+tZqGtO/hoc9cRrDSkm2aPQ+rkXTjGzse2uezmW3mkVVEldIpgsgq1Yo1VNKkXK3WtFKwUIJ8PTe/vS8f3DVs8603CEjkUV8RjqXsFlCo+jEWihFOZ9leJGmIyRgPaVdTH3tU9uMk+Qwea2UA3UDo5yuYqN83YuxJOfUcPZnk/O0txP+8bqTcaj9mfhgp6pP0kBtxqAK4qAEOmKBE8akmmAims0IywgITpcvKJiWkP4V/yVcJraJVqFjoSreBQIoMOARH4AQUwBmog0vQAE1AwAQ8gEfwZMTG3Hg2XtLRJeNzZx/8gPH6AXBDlxY=</latexit>

wgA

<latexit sha1_base64="3CIQO91JFskoBadPTIujFVzqyf0=">AAAB+XicbVDLSgMxFM34rPU1Vly5CRbB1ZDWtra7ihuXFewD2jJk0kwbmnmQZCpl6NaVH+DCTReKuPVP3Pk3pjMKvg4EDufcyz05TsiZVAi9G0vLK6tr65mN7ObW9s6uuZdrySAShDZJwAPRcbCknPm0qZjitBMKij2H07Yzvlj47QkVkgX+tZqGtO/hoc9cRrDSkm2aPQ+rkXTjGzse2uezmW3mkVVEldIpgsgq1Yo1VNKkXK3WtFKwUIJ8PTe/vS8f3DVs8603CEjkUV8RjqXsFlCo+jEWihFOZ9leJGmIyRgPaVdTH3tU9uMk+Qwea2UA3UDo5yuYqN83YuxJOfUcPZnk/O0txP+8bqTcaj9mfhgp6pP0kBtxqAK4qAEOmKBE8akmmAims0IywgITpcvKJiWkP4V/yVcJraJVqFjoSreBQIoMOARH4AQUwBmog0vQAE1AwAQ8gEfwZMTG3Hg2XtLRJeNzZx/8gPH6AXBDlxY=</latexit>

wgA

<latexit sha1_base64="AoL+s4aK/6wFyYvelwV6dorWdv8=">AAAB+XicbVDLSgMxFM34rPU1Vly5CRbB1ZCpOm13RTcuFawK7TBk0kwbzDxIMpUydOvKD3DhpgtF3Pon7vwb0xkFXwcCh3Pu5Z4cP+FMKoTejZnZufmFxdJSeXlldW3d3KhcyDgVhLZJzGNx5WNJOYtoWzHF6VUiKA59Ti/96+OpfzmkQrI4OlejhLoh7kcsYAQrLXmm2Q2xGsggu/Gyvnc0HntmFVn2AXL2EURW3ant15qaHDQQcprQtlCOaqsyub0/3Lo79cy3bi8maUgjRTiWsmOjRLkZFooRTsflbippgsk17tOOphEOqXSzPPkY7mqlB4NY6BcpmKvfNzIcSjkKfT2Z5/ztTcX/vE6qgoabsShJFY1IcShIOVQxnNYAe0xQovhIE0wE01khGWCBidJllfMSip/Cv+SrhIuaZTsWOtNtIFCgBLbBDtgDNqiDFjgBp6ANCBiCB/AInozMmBjPxksxOmN87myCHzBePwBpIJcR</latexit>

wgB

<latexit sha1_base64="mUSf/mA53Hqd7zKxgYodOCqlYZo=">AAAB83icbVDLSsNAFJ3UV1tfVZduBovgQkpStGl2FTcuK9gHNKFMJpN26OTBzEQooRs3/oEbF4q47c+482t0khbxdWDgcM693DPHjRkVUtfftcLK6tr6RrFU3tza3tmt7O13RZRwTDo4YhHvu0gQRkPSkVQy0o85QYHLSM+dXGZ+75ZwQaPwRk5j4gRoFFKfYiSVZNsBkmPhp/HwYjasVPVa3Wxapgn/EqOm56i2Svfe/OPutD2svNlehJOAhBIzJMTA0GPppIhLihmZle1EkBjhCRqRgaIhCohw0jzzDB4rxYN+xNULJczV7xspCoSYBq6azDP+9jLxP2+QSL/ppDSME0lCvDjkJwzKCGYFQI9ygiWbKoIwpyorxGPEEZaqpnJegqUb1nn294w0z5akYX2V0K3XjEZNv1Zt6GCBIjgER+AEGMAELXAF2qADMIjBA3gCz1qiPWov2utitKAtdw7AD2jzT+dilis=</latexit>

pA

<latexit sha1_base64="+G8tH5d27O5BF6YiM35Jf2D4ZFY=">AAAB83icbVDLSsNAFJ3UV1tfVZduBovgQkpStGl2RTcuK9gHNKFMJpN26OTBzEQooRs3/oEbF4q47c+482t0khbxdWDgcM693DPHjRkVUtfftcLK6tr6RrFU3tza3tmt7O13RZRwTDo4YhHvu0gQRkPSkVQy0o85QYHLSM+dXGZ+75ZwQaPwRk5j4gRoFFKfYiSVZNsBkmPhp/HwYjasVPVa3Wxapgn/EqOm56i2Svfe/OPutD2svNlehJOAhBIzJMTA0GPppIhLihmZle1EkBjhCRqRgaIhCohw0jzzDB4rxYN+xNULJczV7xspCoSYBq6azDP+9jLxP2+QSL/ppDSME0lCvDjkJwzKCGYFQI9ygiWbKoIwpyorxGPEEZaqpnJegqUb1nn294w0z5akYX2V0K3XjEZNv1Zt6GCBIjgER+AEGMAELXAF2qADMIjBA3gCz1qiPWov2utitKAtdw7AD2jzT+jnliw=</latexit>

pB

<latexit sha1_base64="mUSf/mA53Hqd7zKxgYodOCqlYZo=">AAAB83icbVDLSsNAFJ3UV1tfVZduBovgQkpStGl2FTcuK9gHNKFMJpN26OTBzEQooRs3/oEbF4q47c+482t0khbxdWDgcM693DPHjRkVUtfftcLK6tr6RrFU3tza3tmt7O13RZRwTDo4YhHvu0gQRkPSkVQy0o85QYHLSM+dXGZ+75ZwQaPwRk5j4gRoFFKfYiSVZNsBkmPhp/HwYjasVPVa3Wxapgn/EqOm56i2Svfe/OPutD2svNlehJOAhBIzJMTA0GPppIhLihmZle1EkBjhCRqRgaIhCohw0jzzDB4rxYN+xNULJczV7xspCoSYBq6azDP+9jLxP2+QSL/ppDSME0lCvDjkJwzKCGYFQI9ygiWbKoIwpyorxGPEEZaqpnJegqUb1nn294w0z5akYX2V0K3XjEZNv1Zt6GCBIjgER+AEGMAELXAF2qADMIjBA3gCz1qiPWov2utitKAtdw7AD2jzT+dilis=</latexit>

pA

<latexit sha1_base64="mUSf/mA53Hqd7zKxgYodOCqlYZo=">AAAB83icbVDLSsNAFJ3UV1tfVZduBovgQkpStGl2FTcuK9gHNKFMJpN26OTBzEQooRs3/oEbF4q47c+482t0khbxdWDgcM693DPHjRkVUtfftcLK6tr6RrFU3tza3tmt7O13RZRwTDo4YhHvu0gQRkPSkVQy0o85QYHLSM+dXGZ+75ZwQaPwRk5j4gRoFFKfYiSVZNsBkmPhp/HwYjasVPVa3Wxapgn/EqOm56i2Svfe/OPutD2svNlehJOAhBIzJMTA0GPppIhLihmZle1EkBjhCRqRgaIhCohw0jzzDB4rxYN+xNULJczV7xspCoSYBq6azDP+9jLxP2+QSL/ppDSME0lCvDjkJwzKCGYFQI9ygiWbKoIwpyorxGPEEZaqpnJegqUb1nn294w0z5akYX2V0K3XjEZNv1Zt6GCBIjgER+AEGMAELXAF2qADMIjBA3gCz1qiPWov2utitKAtdw7AD2jzT+dilis=</latexit>

pA

<latexit sha1_base64="+G8tH5d27O5BF6YiM35Jf2D4ZFY=">AAAB83icbVDLSsNAFJ3UV1tfVZduBovgQkpStGl2RTcuK9gHNKFMJpN26OTBzEQooRs3/oEbF4q47c+482t0khbxdWDgcM693DPHjRkVUtfftcLK6tr6RrFU3tza3tmt7O13RZRwTDo4YhHvu0gQRkPSkVQy0o85QYHLSM+dXGZ+75ZwQaPwRk5j4gRoFFKfYiSVZNsBkmPhp/HwYjasVPVa3Wxapgn/EqOm56i2Svfe/OPutD2svNlehJOAhBIzJMTA0GPppIhLihmZle1EkBjhCRqRgaIhCohw0jzzDB4rxYN+xNULJczV7xspCoSYBq6azDP+9jLxP2+QSL/ppDSME0lCvDjkJwzKCGYFQI9ygiWbKoIwpyorxGPEEZaqpnJegqUb1nn294w0z5akYX2V0K3XjEZNv1Zt6GCBIjgER+AEGMAELXAF2qADMIjBA3gCz1qiPWov2utitKAtdw7AD2jzT+jnliw=</latexit>

pB

<latexit sha1_base64="+G8tH5d27O5BF6YiM35Jf2D4ZFY=">AAAB83icbVDLSsNAFJ3UV1tfVZduBovgQkpStGl2RTcuK9gHNKFMJpN26OTBzEQooRs3/oEbF4q47c+482t0khbxdWDgcM693DPHjRkVUtfftcLK6tr6RrFU3tza3tmt7O13RZRwTDo4YhHvu0gQRkPSkVQy0o85QYHLSM+dXGZ+75ZwQaPwRk5j4gRoFFKfYiSVZNsBkmPhp/HwYjasVPVa3Wxapgn/EqOm56i2Svfe/OPutD2svNlehJOAhBIzJMTA0GPppIhLihmZle1EkBjhCRqRgaIhCohw0jzzDB4rxYN+xNULJczV7xspCoSYBq6azDP+9jLxP2+QSL/ppDSME0lCvDjkJwzKCGYFQI9ygiWbKoIwpyorxGPEEZaqpnJegqUb1nn294w0z5akYX2V0K3XjEZNv1Zt6GCBIjgER+AEGMAELXAF2qADMIjBA3gCz1qiPWov2utitKAtdw7AD2jzT+jnliw=</latexit>

pB

<latexit sha1_base64="65LO0+qBGDT/KyKR/D7Aq1RsdwI=">AAAB83icbVDLSsNAFJ3UV1tfVZdugkVwISEp2rS7ihuXFewDmlAmk0k7dDIJMxOhhG7c+AduXCjitj/jzq/RSVrE14GBwzn3cs8cL6ZESNN81worq2vrG8VSeXNre2e3srffFVHCEe6giEa870GBKWG4I4mkuB9zDEOP4p43ucz83i3mgkTsRk5j7IZwxEhAEJRKcpwQyrEI0tHwYjasVE2jZjeatq3/JZZh5qi2Svf+/OPutD2svDl+hJIQM4koFGJgmbF0U8glQRTPyk4icAzRBI7wQFEGQyzcNM8804+V4utBxNVjUs/V7xspDIWYhp6azDP+9jLxP2+QyKDhpoTFicQMLQ4FCdVlpGcF6D7hGEk6VQQiTlRWHY0hh0iqmsp5CU3Tap5nf89I42xJ6s2vEro1w6ob5rVqwwQLFMEhOAInwAI2aIEr0AYdgEAMHsATeNYS7VF70V4XowVtuXMAfkCbfwLZo5Yi</latexit>gA

<latexit sha1_base64="TXlkCJ+UZPJDvTv8pHhCH13/pxw=">AAAB83icbVDLSsNAFJ3UV1tfVZdugkVwISEp2rS7ohuXFewDmlAmk0k7dDIJMxOhhG7c+AduXCjitj/jzq/RSVrE14GBwzn3cs8cL6ZESNN81worq2vrG8VSeXNre2e3srffFVHCEe6giEa870GBKWG4I4mkuB9zDEOP4p43ucz83i3mgkTsRk5j7IZwxEhAEJRKcpwQyrEI0tHwYjasVE2jZjeatq3/JZZh5qi2Svf+/OPutD2svDl+hJIQM4koFGJgmbF0U8glQRTPyk4icAzRBI7wQFEGQyzcNM8804+V4utBxNVjUs/V7xspDIWYhp6azDP+9jLxP2+QyKDhpoTFicQMLQ4FCdVlpGcF6D7hGEk6VQQiTlRWHY0hh0iqmsp5CU3Tap5nf89I42xJ6s2vEro1w6ob5rVqwwQLFMEhOAInwAI2aIEr0AYdgEAMHsATeNYS7VF70V4XowVtuXMAfkCbfwLbKJYj</latexit>gB

<latexit sha1_base64="TXlkCJ+UZPJDvTv8pHhCH13/pxw=">AAAB83icbVDLSsNAFJ3UV1tfVZdugkVwISEp2rS7ohuXFewDmlAmk0k7dDIJMxOhhG7c+AduXCjitj/jzq/RSVrE14GBwzn3cs8cL6ZESNN81worq2vrG8VSeXNre2e3srffFVHCEe6giEa870GBKWG4I4mkuB9zDEOP4p43ucz83i3mgkTsRk5j7IZwxEhAEJRKcpwQyrEI0tHwYjasVE2jZjeatq3/JZZh5qi2Svf+/OPutD2svDl+hJIQM4koFGJgmbF0U8glQRTPyk4icAzRBI7wQFEGQyzcNM8804+V4utBxNVjUs/V7xspDIWYhp6azDP+9jLxP2+QyKDhpoTFicQMLQ4FCdVlpGcF6D7hGEk6VQQiTlRWHY0hh0iqmsp5CU3Tap5nf89I42xJ6s2vEro1w6ob5rVqwwQLFMEhOAInwAI2aIEr0AYdgEAMHsATeNYS7VF70V4XowVtuXMAfkCbfwLbKJYj</latexit>gB

<latexit sha1_base64="65LO0+qBGDT/KyKR/D7Aq1RsdwI=">AAAB83icbVDLSsNAFJ3UV1tfVZdugkVwISEp2rS7ihuXFewDmlAmk0k7dDIJMxOhhG7c+AduXCjitj/jzq/RSVrE14GBwzn3cs8cL6ZESNN81worq2vrG8VSeXNre2e3srffFVHCEe6giEa870GBKWG4I4mkuB9zDEOP4p43ucz83i3mgkTsRk5j7IZwxEhAEJRKcpwQyrEI0tHwYjasVE2jZjeatq3/JZZh5qi2Svf+/OPutD2svDl+hJIQM4koFGJgmbF0U8glQRTPyk4icAzRBI7wQFEGQyzcNM8804+V4utBxNVjUs/V7xspDIWYhp6azDP+9jLxP2+QyKDhpoTFicQMLQ4FCdVlpGcF6D7hGEk6VQQiTlRWHY0hh0iqmsp5CU3Tap5nf89I42xJ6s2vEro1w6ob5rVqwwQLFMEhOAInwAI2aIEr0AYdgEAMHsATeNYS7VF70V4XowVtuXMAfkCbfwLZo5Yi</latexit>gA

<latexit sha1_base64="TXlkCJ+UZPJDvTv8pHhCH13/pxw=">AAAB83icbVDLSsNAFJ3UV1tfVZdugkVwISEp2rS7ohuXFewDmlAmk0k7dDIJMxOhhG7c+AduXCjitj/jzq/RSVrE14GBwzn3cs8cL6ZESNN81worq2vrG8VSeXNre2e3srffFVHCEe6giEa870GBKWG4I4mkuB9zDEOP4p43ucz83i3mgkTsRk5j7IZwxEhAEJRKcpwQyrEI0tHwYjasVE2jZjeatq3/JZZh5qi2Svf+/OPutD2svDl+hJIQM4koFGJgmbF0U8glQRTPyk4icAzRBI7wQFEGQyzcNM8804+V4utBxNVjUs/V7xspDIWYhp6azDP+9jLxP2+QyKDhpoTFicQMLQ4FCdVlpGcF6D7hGEk6VQQiTlRWHY0hh0iqmsp5CU3Tap5nf89I42xJ6s2vEro1w6ob5rVqwwQLFMEhOAInwAI2aIEr0AYdgEAMHsATeNYS7VF70V4XowVtuXMAfkCbfwLbKJYj</latexit>gB
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Figure 4.1: A biologically plausible generative model is trained with theta frequency
wake-sleep cycles and a local learning rule. a Network schematic: high-D stimuli
from an underlying environmental latent state z arrive at the basal dendrites of the
sensory layer, p, and map to the hidden layer, g (this is the inference model, weights
in green). Simultaneously, top-down predictions from the hidden layer g arrive at
the apical dendrites of p (this is the generative model, weights in blue). b Neurons
in layers p and g have three compartments. A fast oscillation, θ(t), gates which
dendritic compartment – basal (pB, gB) or apical (pA, gA) – drives the soma. A local
learning rule adjusts input weights to minimise the prediction error between dendritic
compartments and the soma. c This equates to rapidly switching “wake” and “sleep”
cycles which train the generative and inference models. Panel (c) displays just two
updates per theta-cycle; in reality, there are many (δt << Tθ).

et al. 2006) and memory consolidation (Carr et al. 2011), and online during

behaviour with path integration (McNaughton et al. 1996). Path integration

enables the hippocampal network to maintain an up-to-date and accurate

estimate of its position in the absence of reliable sensory data by integrating

self-motion cues. A recent flurry of computational (Cueva et al. 2018; Banino

et al. 2018; Sorscher et al. 2023) and theoretical (Dorrell et al. 2023; Sorscher

et al. 2023) work has highlighted the importance of path integration as a key

objective explaining hippocampal function and representations.

Existing computational generative models of the hippocampal formation

(Whittington et al. 2020; George et al. 2021) account for many of its cognitive

functions and internal representations but require non-trivial learning rules and

message passing protocols that don’t connect with known aspects of biology.

Computational models of path integration (Skaggs et al. 1995; Samsonovich

et al. 1997; Burak et al. 2009) have mostly focussed on continuous attractor

networks which, although experimentally supported (Khona et al. 2021), alone

lack the complexity or expressivity required of a fully general model of the
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hippocampal memory system.

The primary contribution of this chapter is to introduce a biologically

plausible model of sequence learning in the hippocampus which unifies its

capacities as a generative model of sensory stimuli and path integration under

one schema. To do this I propose modelling the hippocampal formation as a

Helmholtz machine (Dayan et al. 1995) which learns to predict sensory stimuli

given the current hidden state and action (e.g. velocity). I propose a deep

connection between the hippocampal theta oscillation (Buzsáki 2002) and the

unsupervised wake-sleep algorithm (Hinton et al. 1995) for training Helmholtz

machines. Though this class of generative models isn’t widely used, and lacks

the scalability of the latest transformer-based sequence learners, it excels in this

context since it has many natural points of contact with biology (both in terms

of architecture and neural dynamics) yet still maintains the expressiveness

afforded to models of the brain by deep neural networks.

In this chapter I:

• introduce a new model of the hippocampal formation which learns the

latent structure of an incoming stream of sensory stimuli analogous to a

Helmholtz machine.

• describe a biologically plausible learning regime: Theta-oscillations gate

information flow through multi-compartmental neurons which rapidly

switches the system between “wake” and “sleep” phases. All plasticity is

local.

• train the model on stimuli from a biologically relevant spatial exploration

task and show it learns to path integrate by developing a ring

attractor connectivity structure (comparable to theoretical predictions

and empirical results in deep recurrent neural networks trained with

gradient descent). Learning generalises: when the agent moves to a new

environment, path integration capabilities recover without needing to

relearn the path integration weights.
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This model of the hippocampal formation simultaneously (i) accounts for its

role as a generative model of sensory stimuli, (ii) can learn to path integrate

and (iii) can transfer structural knowledge between environments. The model,

though here applied to the hippocampus, can be viewed as a step towards a

general solution for how biological neural networks in many brain regions (for

example visual cortex (Rao et al. 1999)) can learn generative models of the

world.

4.1.1 Related work
A recent generative model of the hippocampus, the Tolman-Eichenbaum

Machine (Whittington et al. 2020), proposed that the hippocampal formation

be thought of as a hierarchical network performing latent state inference.

Medial entorhinal cortex (MEC) sits atop the hierarchy and learns an abstract

representation of space which is mapped to the hippocampus (HPC) where it

is bound onto incoming sensory stimuli. Once trained the system can act in a

generative fashion by updating the hidden representation with idiothetic action

signals and then predicting the upcoming sensory experience. The drawback

of this model, and others which share a similar philosophical approach (Uria

et al. 2020; George et al. 2021), is that it requires training via backpropagation

through time (or equivalent end-to-end optimisation schemes, as in (George

et al. 2021)) without clear biological correlates. Related hierarchical network

architectures have also been studied in the context of reinforcement learning

(Han et al. 2020) and hippocampal associative memory (Sharma et al. 2022).

Historically, hippocampal models of path integration have focused on

continuous attractor networks (CANs) (Skaggs et al. 1995; Samsonovich et al.

1997; Burak et al. 2009; Sorscher et al. 2023) in entorhinal cortex. A bump of

activity representing location is pushed around the CAN by speed and/or head-

direction selective inputs, thus integrating self-motion. CANs have received

substantial experimental support (Khona et al. 2021) but few studies adequately

account for how this structure is learned by the brain in the first place. One

exception exists outside the hippocampal literature: Vafidis et al. (2022) built
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a model of path integration in the fly head-direction system which uses local

learning rules. This work goes further by embedding the path integrator inside

a hierarchical generative model. Doing so additionally relaxes the assumption

(made by Vafidis et al. (2022) and others (Widloski et al. 2014)) that sensory

inputs into the path integrator are predefined and fixed. Instead, by allowing

all incoming and outgoing synapses to be learned from random initialisations,

I achieve a more generalisable model capable of transferring structure between

environments (see section 4.3.3).

Hippocampal theta oscillations have been linked to predictive sequence

learning before (Skaggs et al. 1996b; Mehta et al. 2000; George et al. 2023a;

George 2023) where research has focused on the compressive effects of theta

sequences and how these interplay with short timescale synaptic plasticity.

Instead of compression, here it is hypothesized that the role of theta is to

control the direction information flows through the hierarchical network.

Finally, a recent theoretical work by Bredenberg et al. (2021) derived,

starting from principles of Bayesian variational inference, a biologically plausible

learning algorithm for approximate Bayesian inference of a hierarchical network

model built from multi-compartmental neurons and trained with local learning

rules using wake-sleep cycles. Here I build a similar network to theirs (i)

extending it to a spatial exploration task and mapping the hidden layers

onto those in the hippocampal formation, (ii) simplifying the learning rules

and relaxing a discrete-time assumption – instead, opting for a temporally

continuous formulation more applicable to biological tasks such as navigation –

and (iii) adapting the hidden layer to allow idiothetic action signals to guide

updates (aka. path integration). Their work provides a theoretical foundation

for the present work, helping to explain why learning converges on accurate

generative models.
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4.2 A Biologically Plausible Generative Model

with Theta-Driven Local Learning
In sections 4.2 and 4.3, concise, intuitive descriptions of the model and

experiments are given; expanded details can be found in Appendix D.2.

4.2.1 Basic Model Summary
I consider learning in an environment defined by a latent state, z(t), which

updates according to stochastic dynamics initially unknown to the network,

dz

dt
= fz(t). (4.1)

These dynamics depend on the task; first, z(t) is considered to be a set of

mutually independent random variables and later, the more realistic task of an

agent moving on a 1D track is considered.

The network receives sensory input which is a function of the latent

state into a sensory layer, p(t), and communicates this to a hidden layer

(aka “internal state”), g(t). The network contains both an inference (aka.

recognition) model which infers the hidden state from the sensory input (green

arrows, Figure 4.1a) and a generative model which updates the hidden state

with recurrent synapses and maps this back to the sensory layer (blue arrows).

As will soon be identified, these processes correspond to Basal and Apical

dendritic compartments of pyramidal neurons, so activations sampled from the

inference model are labelled with the subscript B and those from the generative

model with the subscript A.1 In summary

pB(t+ δt) = p̄(z(t))

gB(t+ δt) = σgB (wgB p(t))

 Inference model (4.2)

1These labellings conveniently match the notion that inferences are made from layers
Below in the sensory hierarchy (bottom-up) whereas generative predictions arrive from Above
(top-down).
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gA(t+ δt) = σgA(wgAg(t))

pA(t+ δt) = σpA(wpAg(t))

 Generative model. (4.3)

wgB , wpA , wgB are matrices of randomly initialised and plastic synaptic weights.

p̄ maps the environmental latent into a vector of neural inputs. σ’s denote

activation functions applied to the dendritic pre-activations – either the identity

(σ(x) = x) or rectified tanh functions (σ(x) = max(0, tanh(x))). A small

amount of noise is added to the dendritic activations to simulate realistic

biological learning.

I believe that the widely adopted convention of modelling neurons as single-

compartment perceptrons is limiting. By considering, in a minimal extension,

the distributed dendritic structure of real neurons, significant potential for

explaining hippocampal learning can be tapped into. Theoretical (Kording

et al. 2001; Urbanczik et al. 2014; Sacramento et al. 2018; Richards et al.

2019) and experimental (Bittner et al. 2015; Brankack et al. 1993; Mizuseki

et al. 2009) research into credit assignment in biological neurons has identified

different roles for basal and apical dendrites: basal dendrites are thought to

receive bottom-up drive from sensory inputs whereas apical dendrites receive

top-down drive from higher layers in the sensory hierarchy (Larkum 2022).

Following this line of research — and matching an equivalent theoretical model

of latent state inference described by (Bredenberg et al. 2021) — I identify

the inference process with synaptic inputs into a basal dendritic compartment

of pyramidal neurons and the generative process with synaptic inputs into

an apical dendritic compartment. In summary, each p and g neuron in my

model has three compartments: a somatic compartment, a basal dendritic

compartment and an apical dendritic compartment (Figure 4.1b). Only the

somatic activation is used for communication between layers (right hand side

of eqs. (4.2) and (4.3)) while dendritic compartment activations are variables

affecting internal neuronal dynamics and learning as described below (eqs. (4.4)

and (4.6)).
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4.2.2 Theta-Gating Information Flow
The dynamics of the somatic activations p(t) and g(t) are as follows: the voltage

in each soma is either equal to the voltage in the basal compartment or the

voltage in the apical compartment depending on the phase of an underlying theta

oscillation. This is achieved by a simple theta-gating mechanism (Figure 4.1b):

p(t) = θ(t)pB(t) + (1− θ(t))pA(t)

g(t) = θ(t)gB(t) + (1− θ(t))gA(t). (4.4)

where θ(t) is a 5 Hz global theta oscillation variable defined by the square wave

function:

θ(t) =


1, if t/T mod 1 ≤ 0.5

0, if t/T mod 1 > 0.5
(4.5)

for T = 1/fθ and fθ = 5 Hz, matching the hippocampal theta frequency (5-10

Hz) (Foster et al. 2007). According to this model theta-band oscillations in the

hippocampal local field potential gate which dendritic compartment drives the

soma. Experimental (Brankack et al. 1993; Holscher et al. 1997; Yamaguchi

et al. 2002) and modelling work (Hasselmo et al. 2002) gives provisional support

for this assumption.

These local theta-dynamics have global consequences: the early phase

(θ(t) = 1) of each theta cycle can be thought of as a “wake” phase where

information flows upwards through the network from the environment to the

hidden layer, sampling the inference model. The latter phase (θ(t) = 0) of each

theta cycle is a “sleep” phase where information flows down from the hidden

layer to the sensory units, sampling the generative model. These dynamics are

displayed in Figure 4.1.

4.2.3 Hebbian-Style Learning Rules
In contrast to comparable models which are optimised end-to-end using

backpropagation through time my model learns synaptic weights according

to a local plasticity rule which is a simplified variant of a rule proposed by
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Urbanczik et al. (2014). Incoming synaptic projections are continually adjusted

in order to minimize the discrepancy between the somatic activation and the

dendritic activation. The full learning rules are described in the Appendix D.2

but simplified versions are given here:

dwgB

dt
∝ (g(t)− gB(t))p(t)T

dwpA

dt
∝ (p(t)− pA(t))g(t)T

dwgA

dt
∝ (g(t)− gA(t))g(t)T (4.6)

Notably this learning rule is equivalent for all plastic synapses in the model:

p to g, g to p and the recurrent g to g synapses (see Figure 4.1b). If a

local prediction error is detected, for example the somatic activation is larger

than the dendritic activation, then the synaptic strength of inputs into that

dendritic compartment which are positive/negative are strengthened/weakened

to reduce the error. This model can equivalently be viewed as a type of Hebbian

learning – weight change is proportional to the correlation of pre- and post-

synaptic activity (the first term) – regularised (by the second term) to prevent

unbounded growth.

During the wake phase the weights of the generative model (wpA and wgA)

are trained and plasticity on the inference weights (wgB) falls to zero. This

occurs naturally because p = pB so there will be no basal prediction errors to

correct. During sleep the reverse occurs; the weights of the inference model are

trained and plasticity on the generative model falls to zero. Experimentally,

apical activity is known to guide plasticity at basal synapses in CA1 (Bittner

et al. 2015). This alternating, coordinated regime of sampling and learning

(sample-inference-train-generative, then sample-generative-train-inference) is a

hallmark of the wake-sleep algorithm. It fundamentally differs from the forward

and backward sweeps of backpropagation since neurons remain provisionally

active at all times so the process of learning minimally perturbs perception.

Also, whereas backpropagation sends error signals down through the network
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to train synaptic weights, here only predictions are sent between layers and

error signals are calculated locally at each dendrite.

As discussed in section 4.1, Bredenberg et al. (2021) mathematically derive

learning rules similar to these starting from a loss function closely related to

the evidence lower bound (ELBO). As such my identification of early- and

late-theta phases as “wake” and “sleep” cycles can be considered precise: from

a Bayesian perspective, the hippocampal model is minimising a modified ELBO

loss (see Appendix D.3) thus learns to find approximately optimal inference

and generative models accounting for the temporally varying stimulus stream

it is presented.

4.2.4 Velocity Inputs
For path integration, the hidden state needs access to an idiothetic (internally

generated) velocity signal. To satisfy this, the hidden layer, g, is endowed

with conjunctive velocity inputs, henceforth “conjunctive cells”, as shown in

Figure 4.3a,b. Conjunctive cells are organised into two groups: gvL is responsible

for leftward motion and gvR for rightward motion. Each conjunctive cell

receives input from the hidden units and either the leftward (vL = max(0,−ẋ))

or rightward (vR = max(0, ẋ)) component of the velocity. For the results

shown this connectivity is one-to-one [wgvL ]ij = [wgvR ]ij = δij but random

connectivity works too, see Appendix D.5.2. Finally, conjunctive cells send

return connections back to the apical dendritic compartment of the hidden

units via a randomly initialised plastic synaptic weight matrix. These inputs

are what drive the hidden units to path integrate.

This model takes inspiration from so-called conjunctive grid cells (Sargolini

et al. 2006) found in the medial entorhinal cortex (MEC). These cells, thought

to be an integral component of the mammalian path integration system (Burak

et al. 2009), are jointly tuned to head direction and location much like the

conjunctive cells in my model. An important and novel aspect of my model

is that synaptic weights between or into the hidden units are learned. This

deviates from other models, for example, that by Burak et al. (2009) (where all
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connectivity is predefined and fixed) or Vafidis et al. (2022) and Widloski et al.

(2014) (where sensory inputs to the hidden units are pre-defined and fixed).

This is not only more realistic but affords the model flexibility to translate path

integration abilities between environments without having to relearn them, a

form of transfer learning which is demonstrated in section 4.3.3.
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Figure 4.2: Learning in an environment of temporally varying latents. a In this
artificial task the latent space comprises of Nz = 5 independent random variables
with an autocorrelation decay timescale of 1 s. b Prediction errors (difference between
apical and basal activations) in sensory and hidden layers reduce over training time.
c Tested in wake mode (θ = 1) after training, the ground truth stimulus matches
apical prediction for all stimulus dimensions (one shown) implying the network is
efficiently “autoencoding” the sensory inputs into and back out of the compressed
hidden layer. d Tested in sleep mode (θ = 0, no environmental inputs), generated
data from the hidden units, g, have an autocorrelation curve which matches that of
the true latents implying a statistically accurate generative model has been learned.
More extensive samples from this model, before and after training, can be found in
Figure D.1

4.3 Model Validation: From Latent Inference

to Path Integration

4.3.1 Artificial Latent Task Validation
Testing begins with the basic model (i.e. without conjunctive inputs,

Figure 4.1a) on an artificial task. Nz = 5 latents, zi(t), are independently

sampled from a smooth, random process with an autocorrelation timescale

of 1 second (Figure 4.2a). The sensory layer, Np = 50, then receives a high-
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dimensional random linear mixture of the latents into the basal compartments:

pB(t) = Az(t), (4.7)

where A ∈ R50×5 and [A]ij ∼ N (0, 1√
Nz

). The hidden layer, g(t), is matched

in size to the latent process, Ng = Nz = 5, and all dendritic activation functions

are linear. The model is trained for 30 minutes of simulated time and track

prediction errors, the difference between the basal and apical activations in

the sensory and hidden layers, which reliably decreased throughout training

(Figure 4.2b). Two tests are then performed designed to confirm whether the

model has learnt accurate inference and generative models.

First, the dynamics of the model are set to “wake” mode (θ = 1) and

the basal and apical activations of one of the sensory neurons are measured

for 60 seconds. Close correspondence (Figure 4.2c) confirms that the network

accurately “autoencodes” the high-dimensional sensory inputs through the

compressed hidden layer. Since all activation functions are linear this implies

that wgB and wpA are pseudoinverses. Next, the network is placed in “sleep”

mode (θ = 0) and the generative model is allowed to run freely. The

autocorrelation of the generated hidden states (g(t|θ = 0), displayed fully

in Figure D.1) match that of the true environmental latents (z(t)), Figure 4.2d,

implying the generative model has statistics closely matching those of the true

underlying generative process.

4.3.2 Emergence of a Ring Attractor for Path Integra-

tion
Next I turn my attention to the hippocampal formation’s role in spatial

navigation, and our central result. The environment consists of an agent

randomly moving around a 1 m 1D circular track (motion and cell data is

generated using the RatInABox package (George et al. 2024)). The basal

compartment of each HPC neuron is spatially tuned to a single different

Gaussian input however non-Gaussian randomly spatially tuned inputs work
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velocity velocity

Figure 4.3: The hippocampal model learns to path integrate on a 1D track using
a ring attractor. a Position selective (place cell) inputs drive basal dendrites of
the sensory layer p (HPC). b Hidden units (MEC) are connected to two sets of
“conjunctive cells” which each connect back to one of the hidden neurons (g) and either
the leftward (for gvL) or rightward (for gvL) velocity of the agent allowing velocity
information to enter the network. Synaptic strengths of the return connections from
the conjunctive cells to the MEC hidden units, as well as those for the MEC recurrent
connectivity (collective denoted wgA), are randomly initialised and plastic. c After
training, reordering the hidden units by the position of peak activity reveals a ring
attractor in the synaptic weight matrices. Centre-surround recurrent connectivity
stabilises an activity bump which is then “pushed” around the attractor manifold
by asymmetric connections from the conjunctive cells, integrating velocity. Bands
of zero weights show MEC neurons which have become perpetually inactive (aka
“died”). The bottom panel displays the matrix row-averages, utilizing the circular
symmetry of the environment to align rows before averaging. d Learning plateaus
after 15 mins of simulated time. e Path integration ability is demonstrated in a lesion
study: after 10 seconds in the normal oscillatory mode the network is placed into
sleep mode (aka generative mode), lesioning the position-dependent sensory inputs.
Despite this HPC continues to accurately encode position, evidence that the MEC
ring attractor is path integrating the velocity inputs and sending predictions back to
HPC. Lower panel shows the accumulated decoding error as well as the mean±SEM
over 50 trials.
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as well (see Figure D.2b):

[pB(t)]i = exp
[
− (x(t)− xi)

2σ2

]
. (4.8)

x(t) is the position of the agent and {xi}Np

i=1 are the centres of the Gaussian

inputs (σ = 6 cm), intended to simulate hippocampal place fields, evenly

spaced at 1 cm intervals along the track. MEC (i.e. the hidden layer, g(t)) is

matched in size Ng = Np = 100 with rectified tanh activation functions on both

dendritic compartments (σgB (x) = σgA(x) = max(0, tanh(x))) and HPC (the

sensory layer p(t)) is linear (σpA(x) = x). Two populations of conjunctive cells

(Figure 4.3a,b) feed into the apical compartments of the MEC recurrent units.

Random initialisation of wgB means that MEC neurons start off with random

non-Gaussian spatial tunings. wgA and wpA are also randomly initialised.

The network is trained for 30 minutes with learning plateauing after

15 (Figure 4.3d). A lesion study, designed to test path integration, is then

performed as follows: First, the network is run for 10 seconds normally (i.e.

with theta-oscillating periods of wake and sleep). Since the simulated HPC

neurons receive place-tuned inputs uniformly ordered along the track (i.e.

xj > xi∀i, j > i) an activity heatmap of HPC reveals a bump of activity

accurately tracking agent’s position (Figure 4.3e, left). The network is then

placed into a sleep phase (θ = 0) for 20 seconds. This amounts to a full

sensory lesion since top-down MEC inputs, not bottom-up place-tuned sensory

inputs, drive HPC. Despite the full sensory lesion, hippocampal activity remains

approximately unperturbed and the activity bump continues to accurately track

position, slowly accumulating errors (Figure 4.3e right). Since my HPC layer

has no recurrent connectivity it cannot support this post-lesion activity on its

own. Instead feed-forward drive from an MEC ring attractor, which I turn my

attention to now, is responsible for maintaining the HPC code.

To find the ring attractor, the MEC cells must first be reordered. This is

done according to the position of the peak of their receptive fields (defined in
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Appendix D.5). After reordering, the recurrent connectivity matrix can be seen

to have acquired a centre-surround connectivity profile. Nearby MEC cells were,

on average, strongly and positively recurrently connected to one another. Those

far apart weakly inhibit one another (Figure 4.3c, left; band of strong positive

weights along diagonal flanked by weak negative weights). This profile matches

that of a quasi-continuous ring attractor: local excitatory and long-range

inhibitory connections stabilise a bump of activity on the attractor manifold

in the absence of sensory input (Zhang 1996). Weights from the conjunctive

cells acquired asymmetric connectivity (Figure 4.3c, middle & right) skewed

towards the velocity direction for which they are selective. These asymmetric

connections enable conjunctive cells to “push” the activity bump around the

manifold, integrating velocity (see Figure D.2 for a visualisation of the MEC

bump attractor). Theoretical work on ring attractors has demonstrated that

for accurate path integration the asymmetric weights must be proportional to

the derivative of the symmetric weights (Zhang 1996), approximately observed

here. A noteworthy observation is that some MEC neurons become perpetually

inactive; this is a consequence of the fact that both top-down and bottom-up

synapses into the hidden layer are plastic and can fall to zero (Figure 4.3c bands

of zero-weights) satisfying a trivial gA = gB = 0 solution for minimising the

prediction error. Despite this, not all MEC neurons die and the surviving subset

are sufficient for path integration. In Appendix D.5.2, additional results are

discussed showing the network learns robust path integration under a variety

of plasticity, initialisation and noise manipulations.

Crucially, what sets this model apart from others (Cueva et al. 2018; Banino

et al. 2018; Sorscher et al. 2023; Dorrell et al. 2023) is that the network is not

optimized using a conventional path-integration objective and backpropagation.

Instead, it has been demonstrated how path integration can naturally arise

in a biologically constrained network subject to a much simpler (yet more

broadly applicable) local objective, in cases where idiothetic velocity signals

are available to the hidden layers.
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4.3.3 Remapping and Flexible Transfer of the Path

Integration Circuit
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Figure 4.4: Remapping and transfer of structural knowledge between environments.
a After training (as in Figure 4.2) place cell inputs are shuffled to simulate a
“remapping” event observed when an agent moves to a new environment. The agent
then retrains for an additional 30 minutes: during this period internal MEC weights,
and weights from the conjunctive cells to MEC are held fixed while MEC ↔ HPC
weights remain plastic. b Receptive fields of the HPC and MEC neuronal populations
at different stages in the experiment: Initially after remapping HPC and MEC inputs
are randomised. MEC relearns rate maps as they were before remapping but with a
constant phase shift. Note: neurons are ordered by the position of their peak activity
on the track before remapping and this ordering is maintained in subsequent panels.
c The error (± SEM over 50 trials) after 1 second of path integration is shown at
different stages of the experiment. Although path integration is initially disrupted
after remapping it recovers despite no relearning of the MEC synapses where the
ring attractor is stored.

Finally, it is demonstrated how the trained network can transfer structural

knowledge – which here means the ring attractor and thereby path integration

– between environments. The process starts by training the network as in

section 4.3.2; the only difference is that for simplicity I choose to fix wgB =

δij giving rise to MEC representations which, like HPC, are unimodal (this

constraint can be relaxed and, in the more general case, MEC units typically

have multiple receptive fields, Figure D.4d, reminiscent of grid cells). I then

simulate a hippocampal “remapping” event by shuffling the sensory inputs

to the HPC layer (Figure 4.4a,b, top panel) and retraining the network for
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a further 30 minutes but this time holding weights in the hidden layer, wgA .

Only the HPC↔ MEC synapses (wgB & wpA) remain plastic during retraining.

Biologically this may be accounted for by the observation that cortical plasticity

is substantially slower than hippocampal plasticity (Ergorul et al. 2006).

During biological remapping events place cells remap independently

whereas grid cells remap en masse with entire modules shifting by the same

constant phase (Fyhn et al. 2007). This observation is reproduced in my

model: after retraining MEC units regroup with receptive fields as they were

before remapping but with a constant phase shift along the track. This re-

emergence of structure occurs because the ring attractor seeds a bump of

activity on the attractor manifold (during the “sleep” phases of retraining) onto

which the shuffled HPC inputs then bind. Since nothing constrains where on

the circularly symmetric attractor manifold this regrouping can initiate, only

relative correlations, modulo a phase shift, are preserved.

Decoding error one second after a sensory lesion is tested just before

remapping, just after remapping and after retraining (Figure 4.4c). After

the remapping path integration abilities temporarily disappear because the

MEC ring attractor is still tuned to the old and invalid HPC receptive fields.

After relearning – and despite no adjustments to the MEC weights, wgA, where

the ring attractor is stored – path integration recovers to almost the level

before remapping. This differs substantially from other local models of path

integration learning (Vafidis et al. 2022; Widloski et al. 2014) which don’t

consider plasticity on the ring attractor inputs. In these models, adaptation to

a new environment necessarily requires complete relearning of the ring attractor.

Instead my model exploits the basic fact that movement (path integration) in

one environment is fundamentally the same as in another, one must simply

learn a new mapping to/from the ring attractor, “translating” it to fit the new

sensory stimuli.
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4.4 Discussion: Theta Oscillations as a Learn-

ing Scheduler for Generative Computation
I propose that the hippocampal formation resembles a Helmholtz machine,

simultaneously learning an inference and generative model of sensory stimuli.

Like previous models (Whittington et al. 2020) medial entorhinal cortex (MEC)

sits hierarchically above the hippocampus (HPC) to which it sends generative

predictions. The model differs in the learning rules and neural dynamics:

local prediction errors are minimised between distinct dendritic compartments

receiving bottom-up and top-down signals. Theta oscillations regulate internal

neural dynamics, switching the network between wake and sleep phases. In

a navigation task, the MEC model forms a ring attractor capable of path

integration. Despite simple learning rules and dynamics, the model retains key

cognitive capabilities of the hippocampal formation including the ability to

transfer knowledge across different sensory environments.

Local learning rules are commonly recognised as essential in biologically

plausible learning algorithms (Urbanczik et al. 2014). However, the importance

of learning scheduling – how neural systems coordinate or multiplex distinct

phases of forward and backward information flow – is often overlooked

(Guerguiev et al. 2017). Neural oscillations such as theta, hypothesized to

temporally coordinate communication between neuronal populations (Fries

2015), likely play an underexplored role in this regard (neural “bursting” has

also been pointed out as a potential solution to multiplexing (Payeur et al.

2021)). One advantage of the wake-sleep algorithm, which this study suggests

neural oscillations can support, compared to forward and backward sweeps

is that, during convergence, the two phases become highly similar, allowing

learning to proceed without affecting perception.

While the discussion has primarily focused on theta oscillations as a

mechanism for learning, they have also been proposed as a mechanism for short-

range future prediction via so-called “mind-travel” (Sanders et al. 2015). During

the latter phase of each theta cycle (i.e. the sleep phase) gain amplified velocity
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signals might rapidly drive the MEC activity bump along the manifold allowing

the agent to assess nearby upcoming locations. This complimentary proposition

could neatly integrate into the framework proposed here and emphasizes the

need for further investigation into the multifaceted functions of neural rhythms

within the hippocampal/entorhinal system.

Beyond theta oscillations, both faster gamma cycles (Li et al. 2021) and

the slower physiological states of sleep and wake (Skaggs et al. 1996a) have

been associated with learning. Based on the model I suggest a tentative

hypothesis that theta oscillations may be favored due to an optimality criterion;

whilst faster oscillations could be a mechanism to prevent extreme drift during

sleep that might disrupt learning their frequency might by upper bounded

biophysically by the neural time constants associated with the biophysical

processes supporting dendritic gating the soma. These ideas, their relevance

to other brain regions involved in generative learning, 2D spatial dynamics,

and offline memory consolidation/replay remain exciting questions for future

theoretical and experimental investigation.



Chapter 5

SIMPL: A Neural Latent

Variable Model

Summary
Neural activity in the brain is known to encode low-dimensional, time-evolving,

behaviour-related variables. A long-standing goal of neural data analysis

has been to identify these variables and their mapping to neural activity. A

productive and canonical approach has been to simply visualise neural “tuning

curves” as a function of behaviour. In reality, significant discrepancies between

behaviour and the true latent variables, such as an agent thinking of position

Y whilst located at position X, distort and blur the tuning curves, decreasing

their interpretability. To address this, latent variable models propose to learn

the latent variable from data; these are typically expensive, hard to tune, or

scale poorly, complicating their adoption. Here I propose SIMPL (Scalable

Iterative Maximization of Population-coded Latents), an EM-style algorithm

which iteratively optimises latent variables and tuning curves. SIMPL is fast,

scalable and exploits behaviour as an initial condition to further improve

convergence and identifiability. It can accurately recover latent variables in

spatial and non-spatial tasks. When applied to a large hippocampal dataset,

SIMPL converges on smaller, more numerous, and more uniformly sized place

fields than those based on behaviour, suggesting the brain may encode space
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with greater resolution than previously thought.

5.1 Introduction: The Discrepancy Between

Behavior and Internal State
Large neural populations in the brain are known to encode low-dimensional,

time-evolving latent variables which are, oftentimes, closely related to behaviour

(Afshar et al. 2011; Harvey et al. 2012; Mante et al. 2013; Carnevale et al.

2015). Coupled with the advent of modern neural recording techniques (Jun

et al. 2017; Wilt et al. 2009) focus has shifted from single-cell studies to the

joint analysis of hundreds of neurons across long time windows, where the goal

is to extract latents using a variety of statistical (Yu et al. 2008a; Cunningham

et al. 2014; Kobak et al. 2016; Zhao et al. 2017; Williams et al. 2020; Bjerke

et al. 2023) and computational (Maaten et al. 2008; Pandarinath et al. 2018;

Mackevicius et al. 2019) methods.

This paradigm shift is particularly pertinent in mammalian spatial memory

and motor systems where celebrated discoveries have identified cells whose

neural activity depends on behavioural variables such as position (O’Keefe

et al. 1971; Hafting et al. 2005), heading direction (Taube et al. 1990), speed

(McNaughton et al. 1983), distance to environmental boundaries/objects (Lever

et al. 2009; Høydal et al. 2019) and limb movement direction (Georgopoulos et

al. 1986) through complex and non-linear tuning curves. Characterising neural

activity in terms of behaviour remains a cornerstone practice in these fields

however the implicit assumption supporting it — that the latent variable

encoded by neural activity is and only is the behavioural variable — is

increasingly being called into question (Sanders et al. 2015; Whittington et al.

2020; George et al. 2023b).

The brain is not a passive observer of the world. The same neurons that

encode an animal’s current position/behavioural state are also used to plan

future routes (Spiers et al. 2006), predict upcoming states (Muller et al. 1989;

Mehta et al. 1997; Stachenfeld et al. 2017) or recall/“replay” past positions
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(Squire et al. 2010; Carr et al. 2011), necessarily causing the encoded latent

variables to deviate from behaviour. Nor is the brain a perfect observer;

uncertainty due to limited, noisy or ambiguous sensory data can lead to

similar discrepancies. Measurement inaccuracies can contribute further. These

hypotheses are supported by analyses that show that it is rarely, if ever, possible

to perfectly decode “behaviour” from neural data (Glaser et al. 2020) and the

observation that neurons show high variability under identical behavioural

conditions (Fenton et al. 1998; Low et al. 2018). All combined, these facts hint

at a richer and more complex internal neural code. When this is not accounted

for tuning curves will be blurred, distorted or mischaracterised relative to their

true form. For example, consider an animal situated at position X ‘imagining’

or ‘anticipating’ a remote position, Y, for which a place cell is tuned. This

might trigger the cell to fire leading to the mistaken conclusion that the cell

has a place field at location X.

Nonetheless, the fact that behaviour is often a close-but-imperfect proxy for

the true latent motivates searching for techniques that exploit this link. Most

existing methods for latent discovery don’t exploit behaviour (Gao et al. 2016;

Gondur et al. 2023) at the cost of complexity and interpretability. Others don’t

model temporal dynamics (Zhou et al. 2020; Schneider et al. 2023; Lawrence

2003), don’t scale to large datasets (Wang et al. 2005; Nam 2015; Wu et al.

2017), can’t model complex non-linear tuning curves (Pandarinath et al. 2018;

Hurwitz et al. 2021; Duncker et al. 2019; Linderman et al. 2016; Gondur et al.

2023), or aren’t designed for spiking datasets (Lawrence 2003; Krishnan et al.

2015). Moreover, many of these methods are conceptually complex, lack usable

code implementations, or necessitate GPUs limiting their accessibility.

Contributions Here, SIMPL (Scalable Iterative Maximisation of

Population-coded Latents) is introduced, a straightforward yet effective

enhancement to the current paradigm. This approach fits tuning curves to

observed behaviour and refines these by iterating a two-step process. First

the latent trajectory is decoded from the current tuning curves then, the
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tuning curves are refitted based on this decoded latent trajectory. SIMPL

imposes minimal constraints on the tuning curve structure, scales well to large

datasets without relying on neural networks that can be expensive to train.

Theoretical analysis establishes formal connections to expectation-maximisation

(EM, Dempster et al. (1977)) for a flexible class of generative models. By

exploiting behaviour as an initialisation, SIMPL converges fast and helps

mitigate local minima and identifiability (Hyvärinen et al. 1999; Locatello et al.

2019) issues. This allows it to reliably return refined tuning curves and latents

which remain close to, but improve upon, their behavioural analogues readily

admitting direct comparison. All in all, SIMPL is able to identify temporally

smooth latents and complex tuning curves related to behaviour, while remaining

cheap and natively supporting spiking data — a distinguishing set of features

in the field of latent variable models for neural data analysis.

SIMPL is first validated on a dataset of synthetically generated 2D grid

cells. Next, I apply SIMPL to rodent electrophysiological hippocampal data

(Tanni et al. 2022) and show that it modifies the latent space in an incremental

but significant way: optimised tuning curves are better at explaining held-out

neural data and contain sharper, more numerous place fields allowing for a

reinterpretation of previous experimental results. Finally, SIMPL is applied

to a somatosensory dataset for a macaque performing a centre-out reaching

task (Chowdhury et al. 2020). SIMPL, with a 4D latent space, provides a

good account of the data with the latent variables initialised to (and remaining

correlated with) the macaque’s hand-position and hand-velocity. With only

two hyperparameters, SIMPL can be run quickly on large neural datasets1

without requiring a GPU. It outperforms popular alternative techniques based

on neural networks (Schneider et al. 2023; Zhao et al. 2017) or Gaussian

processes (Lawrence 2003; Wang et al. 2005) and is over 15× faster. This

makes it a practical alternative to existing tools particularly of interest to

navigational or motor-control communities where abundant data is explained
1One-hour recordings of 200 neurons (106 spikes) takes 1 minute to run on a CPU laptop.
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well by measurable behaviours (position, hand dynamics). An open-source

JAX-optimised (Bradbury et al. 2018) implementation of the code is provided

(see Appendix E.1).

5.2 The SIMPL Algorithm: An EM-Style

Approach
A high-level description of the SIMPL algorithm is given here. Comprehensive

details and a theoretical analysis linking SIMPL to expectation-maximisation,

are provided in Appendix E.3.

5.2.1 The Model
SIMPL models spike trains of the form s := (sti)

i=1,...N
t=1,...T , where sti represents

the number of spikes emitted by neuron i between time (t− 1) · dt and t · dt. I

denote st := (st1, . . . , stN ) the vector of spike counts emitted by all neurons

in the t-th time bin. SIMPL posits that such spike trains s are modulated

by a latent, continuously-valued, low-dimensional, time-evolving variable x :=

(xt)t=1,...,T ∈ RD through the following random process:

xt+1 | xt ∼ N (xt, σ2
vI) (Latent dynamics) (5.1)

sti | xt ∼ Poisson(fi(xt)) (Emission model) (5.2)

where σv := v ·dt and x0 ∼ N (0,σ2
0I). This generative model enforces a tunable

(through the velocity hyperparameter v) amount of temporal smoothness in

the trajectories. At each time step the latent variable xt determines the

instantaneous firing rate of all neurons via their intensity functions fi (hereon

called tuning curves, collectively denoted f), which are unknown a priori, and

which SIMPL will estimate. Moreover, the common assumption is made that all

neurons are conditionally independent given xt, i.e. p(st|xt) =
∏N
i=1 p(sti|xt).

Finally, it is assumed that the latent variable x is Markovian, a common

assumption in the neuroscience literature. This model has been previously

studied in the literature (Smith et al. 2003; Macke et al. 2011), albeit using
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highly restrictive tuning curve models, something that SIMPL avoids.

E-step ≈  MLE + Kalman

≈

x = argmaxx log p(s | x)
‸
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‸
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Figure 5.1: Schematic of SIMPL. (a) A latent variable model (LVM) for spiking
data (fi(x), x(t)) is optimised by iterating a two-step procedure closely related to
the expectation-maximisation: First, tuning curves are fitted to an initial estimate of
the latent trajectory (an “M-step”). The latent is then redecoded from these tuning
curves (an “E-step”). (b) SIMPL fits tuning curves using a kernel-smoothed estimate
(top) and decodes the latent variables by Kalman-smoothing maximum likelihood
estimates. (c) Measured behaviour is used to initialise the algorithm as it is often
closely related to the true generative LVM (d).

5.2.2 The SIMPL Optimisation Algorithm
Outline I now seek an estimate of the true, unknown latent trajectory x⋆ and

tuning curves f⋆ that led to an observed spike train, s. SIMPL does so by

iterating a two-step procedure closely related to the expectation-maximisation

(EM) algorithm: first, tuning curves are fitted to an initial estimate of the latent

variable (the “M-step”), which are then used to decode the latent variable (the

“E-step”). This procedure is then repeated using the new latent trajectory, and

so on until convergence.

The M-step In the M-step (or “fitting” step) of the e-th iteration SIMPL

fits tuning curves to the current latent trajectory estimate x(e) using a smooth,
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kernel-based estimate

f
(e)
i (x) :=

∑T
t=1 sti k(x, x(e)

t )∑T
t=1 k(x, x(e)

t )
≈ # spikes at x

# visits to x
(5.3)

for some kernel k. In practice, I use a Gaussian kernel with small bandwidth

σ. Such a tuning curve model is conceptually simple and free from the

optimisation, misspecification or interpretability issues of most parametric

models. It constitutes a notable departure from alternatives which use a neural

network (Zhou et al. 2020; Schneider et al. 2023) to model tuning curves and is

particularly well suited to low-dimensional latent spaces.

The E-step In the E-step SIMPL seeks to infer (or “decode”) a new

estimate of the latent from the spikes and current tuning curves, x(e+1) =

Ep(x|s,f (e))[x]. Directly performing this inference from the spikes is difficult due

to the non-linearity and non-Gaussianity of the emission model in eq. (5.2).

Instead, SIMPL first calculates the maximum likelihood estimate (MLE) of x,

denoted x̂. Then, by making a linear-Gaussian approximation to p(x̂t|xt) ≈

N (xt; Σt), the variables (x, x̂) form a Linear Gaussian State Space Model

(LGSSM) fully characterised by σ2
vI (the transition noise covariance) and Σt

(the observation noise covariance). This enables efficient inference via Kalman

smoothing of the MLEs in order to approximate x(e+1) = Ep(x|x̂)[x] (schematic

in fig. 5.1b).

x̂(e+1) := arg maxx log p(s|x, f (e))

x(e+1) := Ep(x|x̂(e+1)) [ x ] ≈ KalmanSmooth(x̂(e+1); σ2
vI, Σt)

(5.4)

Crucially, the linear-Gaussian approximation is not made on the spiking

emissions p(s|x), which is non-linear and non-Gaussian by design, but on p(x̂|x),

a quantity which is provably asymptotically Gaussian in the many-neurons

regime (theoretical argument and an explicit formula for Σt in Appendix E.3.1).

Behavioural initialisation Spike trains often come alongside behavioural

recordings xb thought to relate closely to the true latent variable xb ≈ x⋆.
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SIMPL leverages this by setting the initial decoded latent trajectory, to

measured behaviour x(0) ← xb. I posit that behavioural initialisation will

place the first iterate of SIMPL within the vicinity of the true trajectory and

tuning curves, accelerating convergence and favouring the true latent and

tuning curves (x⋆, f⋆) over alternative isomorphic pairs (ϕ(x⋆), f⋆ ◦ ϕ−1) whose

latent space is warped by an invertible map ϕ but which would explain the

data equally well. This amounts to an inductive bias favouring tuning curves

close to those calculated from behaviour. Through ablation studies I confirm

these beneficial effects.

All in all, SIMPL is interpretable and closely matches common practice in

neuroscience (e.g. kernel-based curve fitting, MLE-based decoding); moreover,

it can be formally related to a generalised version of the EM-algorithm, for

which theoretical guarantees may be obtained. I leave to Appendix E detailed

theoretical arguments justifying the validity of SIMPL as well as its connection

to EM.

Algorithm 1 SIMPL: An algorithm for optimizing tuning curves and latents
from behaviour

1: s ∈NN×T ▷ Spike count matrix
2: x(0) ∈ RD×T ▷ Initial latent estimate e.g. measured position of animal
3: procedure SIMPL(s, x(0))
4: for e← 0 to E do ▷ Loop for E iterations
5: f (e) ← FitTuningCurves(x(e), s) ▷ The “M-step”
6: x(e+1) ← DecodeLatent(f (e), s) ▷ The “E-step”
7: end for
8: return x(E+1), f (E) ▷ The optimised latent and tuning curves
9: end procedure

5.3 Validating SIMPL on Synthetic and Bio-

logical Data

5.3.1 Synthetic Data: 2D Grid Cells
SIMPL was first tested on a realistic navigational task by generating a large

artificial dataset of spikes from a population of N = 225 2D grid cells — a
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type of neuron commonly found in the medial entorhinal cortex (Hafting et al.

2005) — in a 1 m square environment. All grid cells had a maximum firing rate

of 10 Hz and were arranged into three discrete modules, 75 cells per module, of

increasing grid scale from 0.3–0.8 m (Figure 5.2c). A latent trajectory, x⋆, was

then generated by simulating an agent moving around the environment for 1

hour under a smooth continuous random motion model. Data was sampled at

a rate of 10 Hz giving a total of T = 36, 000 time bins (∼ 800,000 spikes). All

data was generated using the RatInABox package (George et al. 2024).

The initial trajectory, x(0), was generated by adding smooth Gaussian

noise to the latent such that, on average, the true latent and initial condition

differed by 20 cm (fig. 5.2a, top panel). This discrepancy models the agent’s

internal position uncertainty and/or a measurement error. It sufficed to obscure

almost all structure from the initial tuning curves f (0)(x) (fig. 5.2b, top). To

assess performance I track the log-likelihood of training and test spikes (see

Appendix E.4.5 for how I partition the dataset). I also calculate the error

between the true and latent trajectory the epoch-to-epoch change in the tuning

curves and the negative entropy (hereon called “spatial info”) of the normalized

tuning curves as a measure of how spatially informative they are (fig. 5.2d).

SIMPL was then run for 10 epochs (total compute time 39.8 CPU-secs

on a consumer grade laptop). The true latent trajectory and receptive fields

were recovered almost perfectly and the log-likelihood of both train and test

spikes rapidly approached the ceiling performance with negligible overfitting.

As expected, SIMPL performs better on larger datasets, fig. 5.2e, however

performance remains good even with substantially smaller datasets (e.g. 50

cells for a duration of 5 minutes). A sweep was also performed across the

velocity and kernel bandwidth hyperparameters (v,σ) and SIMPL was found to

be surprisingly robust to changes in these hyperparameters within reasonable

limits (see Appendix E.5.2).

Finally, despite having an implicit prior for temporally-smooth latent

dynamics, further synthetic analysis revealed SIMPL is still able recover
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Figure 5.2: Results on a synthetic 2D grid cell dataset. (a) Estimated latent
trajectories (epochs 0, 1 and 10). Initial conditions are generated from the true
latent (black) by the addition of slow Gaussian noise. Shaded zones show the
discrepancy between the true and estimated latent. (b) Tuning curve estimates for 5
exemplar grid cells. (c) Ground truth tuning curves. (d) Performance metrics: Left:
log-likelihood of the training and test spikes (averaged per time step, dotted line
shows ceiling performance on a model initialised with the true latent). Middle-left:
Euclidean distance between the true and estimated latent trajectories (averaged per
time step). Middle-right: Epoch-to-epoch change in the tuning curves showing they
stabilise over iteration. Right: Cell spatial information. Violin plots, where shown,
give distributions across all neurons. (e) A sweep over the number of cells and the
duration of the trajectory.

discontinuous latent trajectories (for example those containing jumpy-like

“replay” events, see Appendix E.5.3) or even discrete latents in a non-

dynamical task akin to a discrete two-alternative forced choice task (2AFC, see

Appendix E.5.1).

5.3.2 Hippocampal Place Cell Data
Having confirmed the efficacy of SIMPL on synthetic data, it was next tested

on a real dataset of hippocampal neurons recorded from a rat as it foraged

in a large environment (Tanni et al. 2022). This dataset consists of N = 226

neurons recorded over 2 hours, binned at 5 Hz giving T = 36, 000 data samples

and ∼ 700,000 spikes. Many of these cells are place cells (O’Keefe et al. 1971)

which, in large environments, are known to have multiple place fields (Park

et al. 2011).
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I initialised with the animal’s position, as measured by an LED located

between its ears, and optimised for 10 epochs. The log-likelihood of test

and train spikes both increased, converging after 4 epochs (fig. 5.3b) in a

compute time of ∼40 CPU-secs. I then analysed the shapes and statistics of the

tuning curves: After optimisation, tuning curves were visibly sharper, fig. 5.3a;

previously diffuse place fields contracted (e.g. the third exemplar tuning curve)

or split into multiple, smaller fields (second exemplar). Occasionally, new

place fields appeared (fourth exemplar) or multiple place fields merged into a

single larger field (fifth exemplar). Statistically, tuning curves had significantly

more individual place fields (+19%, mean 1.14→1.41 per cell, p = 0.0035

Mann Whitney U tests), substantially higher maximum firing rates (+45%,

median 4.2→6.1 Hz, p = 9.8× 10−7) and were more spatially informative

(p = 0.038). Individual place fields became smaller (-25%, median 0.59→0.44

m2) and rounder (+8%, median 0.63→0.68, p = 0.0037).

To ensure these observed changes weren’t merely an artefact of the

optimisation procedure I generated a control dataset by resampling spikes

from the behaviour-fitted tuning curves, scon ∼ p(·|x(0), f (0)). Control spikes

thus had very similar temporal statistics and identical tuning curves to those in

the hippocampal dataset but, critically, were generated from a known ground

truth model exactly equal to their initialization. Thus, any changes in the

control tuning curves post-SIMPL must be artefactual. Indeed, no significant

changes were observed besides a slight increase in field area (fig. 5.3bc, grey)

providing strong evidence the significant changes observed in the real data

(e.g. the decrease in field area) were genuine, reflecting the true nature of

hippocampal tuning curves.

The optimised latent trajectory x(10) remained highly correlated with

behaviour (R2 = 0.86, fig. 5.3d) occasionally diverging for short periods as it

“jumped” to and from a new location, as if the animal was mentally teleporting

itself (an example is visualized in fig. 5.3e). I calculated the difference between

the optimised latent and the behaviour at each time point, ∆t = ∥x
(0)
t −x(10)

t ∥2,



122 Chapter 5. SIMPL: A Neural Latent Variable Model

log-likelihood

10
0

1.5

dwall [m] 

A,
 [m

2 ] 

ns

**

0 6 1.50

ns

**

10 0 15 -6-8

ns
*

time [min] 
0

3.5

po
s

[m
]

0

no. of place fields field area, A [m2] field ‘roundness’ max. firing rate [Hz] spatial info.

tuning curves, fi(e)(x)

1.5

0

[m
]

latent trajectory, x(e)(t)

before
after

control

epoch0

-0.12

-0.15
10

yxbefore (behaviour)
after (latent)

control

train
test

ns

*****
***

Δ = ‖x(0)-x(10)‖

area vs dist. to wall

3.5 m

(a)

(c)

(d)

(b)

(f)x-difference(e)

3

Figure 5.3: Results on a hippocampal place cell dataset collected by Tanni et al.
(2022). (a) Exemplar tuning curves before and after optimization. Automatically
identified place field boundaries shown in white. (b) Log-likelihood of test and train
spikes. Control model shown in grey. (c) Statistics analysis of place fields. Violin
plots show the distributions over all place fields / cells. (d) The final latent trajectory
estimated from SIMPL (green) overlaid on top of the measured position of the animal
(used as initial conditions, yellow). (e) Behavioural discrepancy map: the average
discrepancy between the latent and behaviour as a function of the optimised latent
x(10). Overlaid is a snippet of the behavioural vs optimised true latent trajectory.
(f) Place field area as a function of the distance to the nearest wall.

and visualized this as a heat map overlaid onto the latent space (fig. 5.3e). I

found that the latent discrepancy was minimal near the edges of the environment

and peaked near the centre, perhaps because sensory input is scarce in the

centre of the environment due to fewer visual and tactile cues.

Tanni et al. (2022) observed that the size of a place field increases with its

distance to a wall. This observation—that the latent discrepancy is highest in

the centre of the environment—suggests one possible hypothesis: behavioural

place fields merely appear larger in the centre of the environment because they

are blurred by the correspondingly larger latent discrepancy. If true, this trend

should weaken after optimisation, once the “true” latent has been found.

To test this I plotted field size against distance-to-wall (fig. 5.3f); optimised

fields, like behavioural fields, were small very near to the walls and grew with

distance (replicating the result of Tanni et al. (2022)), but this correspondence

stopped after ∼ 0.5 m beyond which the optimised place fields size grew
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Figure 5.4: Somatosensory Cortex Results (Continued on next page...)
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Figure 5.4: (...continued from previous page) SIMPL applied to somatosensory
cortex data. (a) A macaque performs centre-out reaches; N = 65 somatosensory
neurons are recorded. (b) Log-likelihood curves for the three SIMPL models in panels
c–e. (c) SIMPL trained with a 2D latent initialised from hand position. Top-left:
raw behaviour, averaged across trials aligned to movement onset; top-right: after
SIMPL. Middle: 40 s of behaviour (yellow) and latent (green). Bottom: exemplar
tuning curves before and after SIMPL. (d) As in c, but initialised with hand velocity.
(e) As in c, but with a 4D latent initialised to hand-position (dims 1 and 2) and
velocity (dims 3 and 4). Inset: 2D visualisation of a 4D latent embedding from
CEBRA trained on hand position, adapted from Schneider et al. (2023).

more weakly with distance-to-wall. This supports my hypothesis, suggesting

a substantial fraction of the correlation between size and distance isn’t a

fundamental feature of the neural tuning curves but an artefactual distortion

in the tuning curves, something which can be corrected for using SIMPL.

5.3.3 Somatosensory Cortex Data During a Hand-

Reaching Task
To test SIMPL beyond navigational/hippocampal datasets, it was run on a

macaque somatosensory cortex dataset Chowdhury et al. (2020). During this

recording a macaque made a series of reaches to a target in one of 8 directions,

fig. 5.4. On half of the trials the reach was “active” whereby the macaque

moved the manipulandum towards the target by itself. On the other half, the

reach was “passive”, whereby the macaque’s hand was bumped in the direction

of one of the targets by a force applied to the manipulandum, forcing the

macaque to correct and return the cursor to the centre. I binned the data

(N = 65 neurons, 37 mins, ∼106 spikes) at 20 Hz and ran SIMPL models on

its entirety (i.e. active and passive reaches, as well as the inter-trial intervals)

for 10 epochs.

First SIMPL was run with a 2D latent initialised to the macaque’s measured

x- and y-hand position (fig. 5.4c). Afterwards, the latent trajectory—here

averaged across trials with the same direction, aligned to movement onset—had

diverged from, but remained correlated with, initial hand-position (correlation =

0.59). Despite an improvement in likelihood over the behavioural initialisation,
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latent trajectories for distinct directions substantially overlapped with one

another, indicating an insufficient dimensionality to capture the full complexity

of the data. A similar result was obtained when initialising to hand-velocity

(fig. 5.4d).

I then trained SIMPL with a 4D latent space. Two of the dimensions were

initialised with hand position and the other two with hand velocity. This model

performed better than either 2D model, converging to a higher likelihood. The

latent dimensions initialised to hand-position remained highly correlated with

hand-position (corr. = 0.74) after optimisation as did the velocity dimensions

(corr. = 0.57). The latent trajectory was also more structured, with distinct

and less overlapping motifs for each trial type. I visualised two-dimensional

slices of the four-dimensional tuning curves for each neuron and found that they

had well-defined receptive fields, similar to place fields in the hippocampus,

which were visibly sharper after optimisation. These results suggest that the

somatosensory cortex neurons encode a complex and high-dimensional latent,

closely correlated to hand position and velocity, which can be partially recovered

by SIMPL.

5.3.4 The Critical Role of Behavioral Initialization
Latent variable models trained with EM can experience two issues that usually

complicate the scientific interpretability of their results. The first concerns the

quality of the solution; does the algorithm converge on a good model of the

data which predicts the spikes well? The second issue concerns identifiability;

even if the recovered latent trajectory and tuning curves (f (e), x(e)) are of high

quality, they may differ from the true ones (f⋆, x⋆) by some invertible “warp”

ϕ in a way that does not affect the overall goodness-of-fit of the model. These

warps could include innocuous rotations and symmetries or, more concerningly

if the exact structure of the tuning curve is a quantity of interest, stretches

or fragmentations. Here it is shown that behavioural initialisation drastically

minimises the severity of both of these issues for SIMPL.

To do so, I first assess the absolute goodness-of-fit of SIMPL by computing,
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Figure 5.5: Latent manifold analysis: (Top) Exemplar tuning curve in (a)
the ground truth latent space, (b) the latent space discovered by behaviourally-
initialised-SIMPL after 0, 1 and 10 epochs and (c) the latent space discovered by
SIMPL initialised with a random latent trajectory. Inset scatter plots show the true
and predicted firing rates of all neurons across all times as well as their correlation
values (“accurate” models have higher correlations). (Bottom) The warp mappings
from each latent space to the “closest” location in ground truth as measured by the
distance between the tuning curves population vectors.

for all neurons, the correlation between the estimated instantaneous firing rates

f (e)

i (x(e)
t ) (a quantity invariant to warping) and the true firing rates f⋆i (x⋆t ).

SIMPL converges to a highly accurate model (r=0.98) under behavioural

initialization, but to a less accurate, though still quite accurate, model (r = 0.87)

when initialised with a random trajectory uncorrelated to the true latent. Next,

I estimate, quantify and visualize the warp map ϕ between SIMPL’s estimates

(f (e), x(e)) and the ground truth (f⋆, x⋆). I obtain this by finding, for every

location in the warped space, the position in the true latent space where the

tuning curves are most similar (ϕ(x) = arg miny ∥f⋆(y)− f (e)(x)∥2). I then

quantify the “warpness” of this mapping as the average distance between x

and ϕ(x) across the environment, normalized by its characteristic length scale

(1 m). This warp-distance should be 0 for totally un-warped models and O(1)

for heavy warps. In addition to perfectly fitting the data, the solution found

by SIMPL under behavioural initialization is minimally warped (warp dist

= 0.050). In contrast, the good (but imperfect) solution found by SIMPL

under random initialization is very heavily warped (warp dist. = 0.498) in
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a fragmented manner. These results (fig. 5.5) strongly motivate the use of

behavioural initializations in latent variable models as an effective means to

encourage convergence towards latent spaces which are both accurate and

un-warped with respect to the ground truth.

5.3.5 Performance Comparison with State-of-the-Art

Methods
I compared SIMPL to four popular methods for latent variable extraction:

pi-VAE (Zhou et al. 2020), CEBRA (Schneider et al. 2023) (that use neural

network function approximators), GPLVM (Lawrence 2003) and GPDM (Wang

et al. 2005) (that use Gaussian processes). Crucially, and like SIMPL, none of

these methods make restrictive linear assumptions about the structure of the

tuning curves.

To match SIMPL, I initialise the latent variable estimates of GPLVM and

GPDM to behaviour (pi-VAE and CEBRA handle behaviour natively by using

it to condition a prior over the latent or as a contrastive label). All models

were trained for their default number of iterations/epochs. After training I

aligned the discovered latents to behaviour and visualised them on top of the

ground truth (fig. 5.6c). All models successfully uncovered a latent trajectory

closer to the ground truth than behaviour (fig. 5.6b). SIMPL performed better

than the other models, achieving a final error of 4.2 cm, half that of pi-VAE

(8.4 cm).

I posit that pi-VAE, CEBRA and GPLVM may suffer from the lack of an

explicit dynamical systems component in their generative models while GPDM

may suffer from the data-subsampling that was required to cap the training

time to less than two-hours. SIMPL converged in 40 seconds, over 15 times

quicker than the next fastest (pi-VAE, 10.4 minutes, fig. 5.6a). Except for

GPDM, which required a GPU, all techniques were run and timed on a CPU.

Only SIMPL was able to recover sharp and accurate grid fields close to the

ground truth.
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Figure 5.6: Comparison to pi-VAE, CEBRA, GPLVM and GPDM on the synthetic
grid cell dataset. (a) Compute time. (b) Final error in the latent. (c) Alignment of
the discovered latent to the ground truth. (d) Exemplar tuning curves constructed
using kernel-based estimation on the latent (i.e. an “M-step”).

5.4 A Survey of Latent Variable Models for

Neural Data
Probabilistic inference in neural data modulated by latent variables has been a

major topic of study for decades — see, e.g. Tipping et al. (1999), Yu et al.

(2006), Yu et al. (2008b), Yu et al. (2008a), Macke et al. (2011), Mangion et al.

(2011), Park et al. (2015), Gao et al. (2016), Hernandez et al. (2018), Dong

et al. (2020), Zhou et al. (2020), Gondur et al. (2023), and Bjerke et al. (2023)

— however not all methods were designed for the kind of data considered in this

chapter. Many methods model complex latent space dynamics but combine

these with simplistic tuning curves that restrict firing rates to (exponential-

)linear functions of the latent (Smith et al. 2003; Yu et al. 2008a; Macke et al.

2011; Duncker et al. 2019; Linderman et al. 2016; Pandarinath et al. 2018;
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Zoltowski et al. 2020; Sani et al. 2021; Hurwitz et al. 2021; Kim et al. 2021;

Gondur et al. 2023) so cannot interpretably account for the representations

(place cells, grid cells) considered here. Other methods do not/cannot use

behaviour to aid latent discovery (Gao et al. 2016; Nam 2015; Hernandez

et al. 2018; Gondur et al. 2023; Bjerke et al. 2023) instead taking a fully

“unsupervised” approach (meaning they can be applied to spike data without an

obvious behavioural correlate) at the expense of complexity and identifiability.

Algorithms that both don’t restrict to simplistic linear tuning curves

and exploit behaviour form a small set of relevant alternatives to SIMPL.

Behaviour-informed latent discovery tools have become popular in recent years

due to the explosion of large neural datasets taken from behaving animals and

the observation that behaviour can explain substantial variance in the neural

dynamics.

Gaussian process latent variable models (GPLVMs), Lawrence (2003) and

Wang et al. (2005) form a family of methods that learn smooth, non-linear tuning

curves by placing GP priors on them and performing approximate marginal log-

likelihood optimisation on the latent variable. Popular implementations leave

the initial condition of this optimisation user-defined and therefore compatible

with the behaviour-informed initialisation used here. However, most such

models were introduced outside of the neuroscience literature thus use Gaussian

(instead of Poisson) emission models (Lawrence 2003; Wang et al. 2005; Jensen

et al. 2020), or do not make smoothness assumptions on the latent trajectory

(Jensen et al. 2020; Lawrence 2003). P-GPLVM, which employs Poisson

emissions and a GP prior on the latent trajectory, is an exception, but its

cubic scaling with time points makes it impractical for hour-long datasets. In

contrast, available GPLVM implementations (Bingham et al. 2018) use inducing

point approximations to achieve linear time complexity.

CEBRA (Schneider et al. 2023) learns a deterministic neural network

mapping from spikes to latents using behaviour- or time-guided contrastive

learning. Unlike most methods, CEBRA does not natively learn a generative
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model nor tuning curves, which are of primary interest in this setting. CEBRA

also treats each data point independently instead of modelling whole-trajectories

preventing it from taking advantage of the temporal smoothness inherent in

many underlying latent codes.

pi-VAE (Zhou et al. 2020) uses a variational autoencoder (Kingma et al.

2014) to infer the latent trajectories and learn tuning curves using neural

network function approximators. pi-VAE places a learnable prior, conditioned

on behaviour, to the latent variable in order to obtain a model with provable

identifiability properties. However, pi-VAE suffers from the same limitation as

CEBRA in that it treats each data point as an i.i.d observation instead of a

part of a whole trajectory.

The properties of large scale neural datasets suggest five desiderata for the

algorithms used to analyse them. These are (1) the absence of restrictive tuning

curve assumptions, (2) modelling smooth latent dynamics, (3) the presence of a

spiking component (e.g. Poisson emissions), (4) the ability to exploit behaviour

(including as an initial condition) and (5) scalability to large datasets. None

of the methods described in the literature review satisfy all five desiderata.

In Appendix E.6, a table is provided comparing all methods discussed in this

section and more with respect to these desiderata.

5.5 Discussion: A Practical Tool for Uncover-

ing the Brain’s Latent Code
SIMPL was introduced, a tool for optimizing tuning curves and latent

trajectories using a technique that refines estimates obtained from behaviour.

It hinges on two well-established sub-routines — tuning curve fitting and

decoding — that are widely used by both experimentalists and theorists for

analysing neural data. By presenting SIMPL as an iterative application of

these techniques, I aim to make latent variable modelling more accessible to

the neuroscience community.

SIMPL could be seen as an instance of a broader class of latent optimization
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algorithms. In principle any curve fitting procedure and any decoder (which uses

those tuning curves) could be coupled into a candidate algorithm for optimizing

latents from neural data. My specific design choices, while attractive due to

their conceptual and computational simplicity, will come with limitations. For

example, I predict SIMPL’s kernel-based estimator won’t scale well to very

high dimensional latent spaces (Györfi et al. 2006) where parametric models,

e.g. a neural networks, are known to perform better (Bach 2017), potentially

at the cost of compute time.

My synthetic analysis focused on settings where behaviour and the true

latent differed only in an unbiased manner. It would be interesting to determine

if SIMPL’s performance extends to more complex perturbations. Fast, non-

local and asymmetric perturbations are common in the brain; for instance

“replay” (Carr et al. 2011) where the latent jumps to another location in

the environment. Likewise, during theta sequences (Maurer et al. 2006), the

encoded latent moves away from the agent. This forward-biased discrepancy

could theoretically induce a backward-biased skew in behavioural place fields,

even if the true tuning curves remain unskewed. If this is the case, proper

latent dynamical analysis—via tools like SIMPL—could help reinterpret the

predictive nature of place field tuning curves (Stachenfeld et al. 2017; Fang

et al. 2023; Bono et al. 2023; George et al. 2023a), similar to how it reduced

the asymmetry in place field sizes further from walls (fig. 5.3f).





Chapter 6

General Discussion

This thesis has explored how neural systems learn and use internal representa-

tions to support flexible behaviour, with a primary focus on the mammalian

spatial memory system. By developing computational tools and biologically

plausible models, this work studies the learning of, and interplay between,

structure and dynamics that gives rise to cognitive maps with sophisticated

functions. The research advances both theoretical and practical understanding

within neuroscience and contributes new tools and models to the growing field

of NeuroAI (Zador et al. 2023).

6.1 Summary Discussion of the Major Themes
A central theme of this thesis has been the development and analysis of

computational models that are explicitly designed to be biologically

plausible, serving as a bridge between high-level cognitive theories and the

mechanistic details of neural circuits. The work presented in Chapters 2

and 3 confronts this challenge directly by proposing a plausible mechanism

for how the hippocampus could learn a predictive map, a concept from

reinforcement learning. Instead of relying on error-driven algorithms, these

models demonstrate that spike-timing dependent plasticity (STDP), when

combined with the temporal compression afforded by theta phase precession,

is sufficient to learn a close approximation of the successor representation.

The work in Chapter 4 introduces a generative model of the hippocampal-
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entorhinal loop that performs path integration and mental simulation using

only local, Hebbian-style learning rules gated by theta oscillations, avoiding

unrealistic requirements like backpropagation-through-time and other non-local

learning mechanisms. Collectively, these models provide an existence proof that

sophisticated and theoretically powerful computations are achievable within the

known anatomical and physiological constraints of the hippocampal formation.

Complementing this theoretical work, a second major theme was the

development and validation of practical, open-source tools to enable

better and more reproducible research. This is most directly addressed

in Chapter 1, which introduces the RatInABox toolkit. This software provides

a standardised, efficient, and realistic environment for simulating rodent

locomotion and neural activity, tackling the issues of duplicated effort and a lack

of comparability between studies. Furthering this theme, Chapter 5 presents

SIMPL, a novel and computationally efficient algorithm for latent variable

discovery. By leveraging behaviour as an initial condition, SIMPL offers a

practical solution to the long-standing challenge of characterising neural tuning

curves, revealing that the brain’s internal representations may be significantly

more precise than what is observable from behaviour alone. These tools are not

merely by-products of the research but are themselves primary contributions

designed to strengthen the infrastructure of computational neuroscience as

applied to the spatial memory system.

6.2 Open Questions and Future Research

Themes
While by no means exhaustive, several key themes and open questions for

future research emerge from the work presented in this thesis:

1. The Interplay Between Structural Learning and Dynamic

Computation: The thesis explores how predictive maps can be learned

through long-term structural changes in synaptic weights (Chapter 3)

and how neural dynamics can perform computations like path integration
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(Chapter 4). A significant future direction is to understand how these two

modes of computation—modifying network structure versus modulating

network dynamics—are balanced and integrated. This raises the question:

Under what circumstances does the brain, or another neural system,

favour altering long-term synaptic connections versus relying on short-

term, dynamic computations to support flexible behaviour, a question that

mirrors the distinction between “in-weights” and “in-context” learning in

modern AI (Brown et al. 2020).

2. Unifying Different Forms of Experience Compression for Learn-

ing: The work highlights how theta sequences and phase precession

can compress behavioural timescales to enable learning with STDP

(Chapters 2 and 3). The hippocampus also uses sharp-wave ripple (SWR)

replay to compress past experiences, a process thought to be critical

for memory consolidation (Wilson et al. 1994). Other fast oscillatory

patterns, such as gamma oscillations, are also implicated in replay and

learning (Li et al. 2021). A key open question is how these different forms

of compressed replay are coordinated. Do theta sweeps and SWR replay

serve distinct learning functions? For instance, theta-based learning

might support online, incremental updates to a cognitive map, while

SWR replay could be reserved for prioritised consolidation of particularly

important experiences, such as trajectories leading to reward (Mattar

et al. 2018) or exposure to novel environments (Cheng et al. 2008).

3. Extending Latent Variable Discovery to Abstract and Non-

Spatial Domains: The SIMPL algorithm (Chapter 5) demonstrates that

repeated decoding and refitting, using behaviour as an initial estimate, can

successfully refine the underlying latent neural representations for spatial

tasks. The hippocampus, however, is thought to encode not just physical

space but also abstract and non-spatial “cognitive maps” (Constantinescu

et al. 2016; Garvert et al. 2017; Whittington et al. 2020). A compelling

future direction is to apply or adapt tools such as SIMPL to investigate
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these abstract cognitive spaces. By initialising the model with non-spatial

behavioural variables (e.g., progress toward a goal, social hierarchies,

or task parameters), researchers could explore whether the underlying

neural representations conform to similar principles of organisation (e.g.,

place-like or grid-like coding) as the spatial domain.

4. Scaling Biologically Plausible Learning Rules for Complex

Generative Models: The generative model in Chapter 4 shows how

local, Hebbian-style learning rules, gated by oscillations, can give rise to

sophisticated functions like path integration through the emergence of a

ring attractor structure. While this provides a crucial proof of principle,

a major challenge still remains in scaling these biologically plausible

mechanisms to handle the complexity and high dimensionality of real-

world sensory inputs, a domain where deep learning models trained with

backpropagation currently excel (Goodfellow et al. 2014; Vaswani et al.

2017). Future research could explore how architectures inspired by the

hippocampal formation might be expanded to create more powerful and

generalisable generative models for AI, potentially offering advantages in

efficiency (Lillicrap et al. 2020) or continual learning (Kirkpatrick et al.

2017; Parisi et al. 2018).

6.3 Open science: Towards a more equitable

and transparent global research culture
The open-source toolkits developed in this thesis, RatInABox (Chapter 1) and

SIMPL (Chapter 5), are rooted in a firm commitment to open and reproducible

science. As a practical extension of this philosophy, a significant part of my

doctoral work has been dedicated to co-founding the TReND-CaMinA summer

school (Soldado-Magraner et al. 2023; Cashin-Garbutt et al. 2023). This non-

profit initiative, now in its fourth year, provides training in computational

neuroscience and machine learning for young African researchers, addressing the

issue that Africa’s scientific output remains low (Nabyonga-Orem et al. 2024;
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Schneegans et al. 2021) despite the continent’s large and youthful population

(Ashford et al. 2007). Entirely free for students and funded by donations from

the global research community, the school embodies open-science principles by

training students on open-source tools and large-scale public datasets (Vries

et al. 2023), and making all teaching materials open-source.

By lowering barriers to research and education, the tools in this thesis and

community-driven initiatives like TReND-CaMinA are complementary efforts

toward fostering a more equitable and transparent global research culture.

6.4 Conclusion
The research presented in this thesis has been guided by a central goal: to

bridge the gap between powerful, normative theories of cognition and the

mechanistic realities of neural circuits. By demonstrating how fundamental

biological processes like spike-timing dependent plasticity and neural oscillations

can implement sophisticated computations, this work takes a tangible step

towards a more unified understanding of the hippocampus. It is my hope that

the models and tools developed here will not only advance our knowledge but

also inspire future research that continues to ground abstract ideas in concrete,

testable neural mechanisms, pushing our field closer to a more comprehensive

understanding of the brain and its role in all aspects of cognition.
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Appendix A

Appendix to Chapter 1

A.1 Code Availability
Code used to generate the results in Chapter 1, as well as the RatInABox

package itself, is available at https://github.com/RatInABox-Lab/RatInAB

ox.

A.2 Model and Feature Specifications
The following section describes in mathematical detail the models used within

RatInABox.

A.2.1 Motion Model Details

Temporally continuous random motion
The random motion model is based on the Ornstein Uhlenbeck (OU) process,

Xθ,λ,µ(t), a stochastic process satisfying the Langevin differential equation

Xθ,λ,µ(t+ dt) = Xθ,λ,µ(t) + dXθ,λ,µ(t),

dXθ,λ,µ(t) = θ(µ− Xθ,λ,µ(t))dt+ λη(t)
√
dt (A.1)

where η(t) ∼ N (0, 1) is Gaussian white noise and θ, λ and µ are constants.

The first term in the update equation drives decay of Xθ,λ,µ(t) towards the

mean µ. The second term is a stochastic forcing term, driving randomness.

These stochastic processes are well studied; their unconditioned covariance

https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox
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across time is

⟨Xθ,λ,µ(t)Xθ,λ,µ(t
′)⟩ = λ2

2θ e
−θ|t−t′|. (A.2)

Thus Xθ,λ,µ(t) decorrelates smoothly over a timescale of τ = 1/θ. Over

long periods Xθ,λ,µ(t) is stochastic and therefore unpredictable. Its long-

run stationary probability distribution is a Gaussian with mean µ and

standard deviation σ =
√
λ2/2θ. The Ornstein Uhlenbeck process can be

re-parameterised in terms of these more intuitive parameters (the decorrelation

timescale τ and the long-run standard deviation σ) using the transformations

θ =
1
τ

, λ =

√
2σ2

τ
, (A.3)

to give

Xτ ,σ,µ(t+ dt) = Xτ ,σ,µ(t) + dXτ ,σ,µ(t),

dXτ ,σ,µ(t) =
1
τ
(µ−Xτ ,σ,µ(t))dt+

√
2σ2

τ
η(t)
√
dt. (A.4)

Ornstein Uhlenbeck processes have the appealing property that they are

temporally continuous (their statistics are independent of dt) and allow for

easy control of the long-run standard deviation and the decorrelation timescale

of the stochastic variable. For these reasons they are used to model rotational

and linear velocities within RatInABox.

2D motion For 2D locomotion, the Agent’s rotational velocity ω(t) = θ̇v(t)

and linear speed, v2D(t) = ∥v(t)∥, are sampled from independent OU processes.

This is because, as shown in section 1.3, they have decorrelation timescales

differing by an order of magnitude. Rotational velocity is sampled from a

standard Ornstein Uhlenbeck process with zero mean. Linear speed is also

sampled from an Ornstein Uhlenbeck process with one additional transform

applied in order to match the observation that linear speeds have a Rayleigh,
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not normal, distribution.

ω(t) ∼ Xτω,σω,0(t), (A.5)

v2D(t) = Rσv(z(t)) where z(t) ∼ Xτv,1,0(t), (A.6)

where Rσ(x) is a monotonic transformation which maps a normally

distributed random variable x ∼ N (0, 1) to one with a Rayleigh distribution

of scale parameter σ. σ corresponds to the mode, or ≈ 0.8 times the mean, of

the Rayleigh distribution.

Rσ(x) = σ

√
−2 ln

(
1− 1

2

[
1 + erf

(
x√
2

)])
. (A.7)

The parameters {τω,σω, τv,σv} are fitted from real open field 2D

locomotion data in Figure 1.2 or can be set by the user.

Full trajectories are then sampled as follows: First the rotational and

linear velocities are updated according to eqs. (A.5) and (A.6) (and additional

considerations for walls, see next section). Next the velocity direction, θv(t)

– defined as the angle of the velocity vector measured anticlockwise from the

x-direction – is updated according to the rotational velocity, ω(t).

θv(t) =
(
θv(t− dt) + ω(t)dt

)
mod 2π. (A.8)

This is combined with the linear speed, v2D(t) to calculate new total velocity

vector, v(t).

v(t) = v2D(t)

cos θv(t)

sin θv(t)

 . (A.9)

Finally position, x(t), is updated by integrating along the total velocity vector

to give a continuous and smooth, but over long time periods random, motion
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trajectory.

x(t) = x(t− dt) + v(t)dt. (A.10)

1D motion Motion in 1D is more simple than motion in 2D. Velocity is also

modelled as an Ornstein Uhlenbeck process without the Rayleigh transform.

In this case a non-zero mean, µv, corresponding to a directional bias in the

motion, can be provided by the user. In summary:

v1D(t) ∼ Xτv,σv,µv(t), (A.11)

x(t) = x(t− dt) + v1D(t)dt. (A.12)

External velocity control
It is possible to provide an external velocity signal controlling the Agent’s

motion. After the random motion update (as described above) is applied, if an

external velocity vdrift(t) is provided by the user, an additional update to the

velocity vector is performed

dv(t+ dt) =
1

τdrift
(vdrift(t)− v(t))dt. (A.13)

In cases where τdrift >> τv the net update to the velocity (random update and

drift update) is dominated by the random component. When τdrift << τv the

update is dominated by the drift component. I define τdrift := τv/k where k

is an argument also provided by the user. To good approximation for large

k >> 1 the Agent velocity closely tracks the drift velocity at all times and is

not random whilst for k << 1 the drift velocity is ignored and the motion is

entirely random.

Motion near walls in 2D
An important feature is the ability to generate Environments with arbitrary

arrangements of walls (aka ‘barriers’ or ‘boundaries’). Walls are meaningful
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only if they appropriately constrain the motion of the Agent. For biological

agents this means three things:

1. The Agent cannot travel through a wall.

2. The Agent slows down upon approaching a wall to avoid a full-speed

collision.

3. There may be a bias called “thigmotaxis” for the Agent to stay near

walls.

The motion model replicates these three effects as follows:

Collision detection To avoid travelling through walls, if a collision is detected

the velocity is elastically reflected off the wall (normal component is flipped).

The speed is then scaled to one half the average motion speed, v2D(t) = 0.5σv.

Wall repulsion Spring-deceleration model In order to slow down before

colliding with a wall the Agent feels an acceleration, perpendicular to the wall,

whenever it is within a small distance, dwall, of the wall.

v̇(t) = k1
∑

walls,j
nj


(s·σv)2

d2
wall
· (dwall − d⊥,j(t)) if d⊥,j(t) ≤ dwall,

0 if d⊥,j(t) > dwall.
(A.14)

d⊥,j(t) is the perpendicular distance from the Agent to the jth wall, nj is the

perpendicular norm of the jth wall (the norm pointing towards the Agent) and

k1 & s are constants (explained later). dwall is the distance from the wall at

which the Agent starts to feel the deceleration, defaulting to dwall = 0.1 m.

Note that this acceleration is identical to that of an oscillating spring-mass

where the base of the spring is attached a distance dwall from the wall on a

perpendicular passing through the Agent. The spring constant is tuned such

that a mass starting with initial velocity towards the wall of −sσvnj would

stop just before the wall. In summary, for k1 = 1, if the Agent approaches the

wall head-on at speed of sσv (s times its mean speed) this deceleration will just

be enough to avoid a collision.
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s is the unitless wall repel strength parameter (default s = 1). When it is

high, walls repel the agent strongly (only fast initial speeds will result in the

agent reaching the wall) and when it is low, walls repel weakly (even very slow

initial speeds will not be slowed done by the spring dynamics). When s = 0

wall repulsion is turned off entirely.

Conveyor-belt modelA second (similar, but not exactly equivalent) way

to slow down motion near a wall is to consider a hypothetical conveyor belt

near the wall. This conveyor belt has a non-uniform velocity pointing away

from the wall of

ẋ(t) = k2
∑

walls,j
nj


s · σv

(
1−

√
1− (dwall−d⊥,j(t))2

d2
wall

)
if d⊥,j(t) ≤ dwall,

0 if d⊥,j(t) > dwall.
(A.15)

When the Agent is close to the wall the hypothetical conveyor-belt moves

it backwards on each time step, effectively slowing it down. Note that this

velocity is identical to that of a spring-mass attached to the wall with initial

velocity sσvnj away from the wall and spring constant tuned to stop the mass

just before it reaches a distance dwall. In summary, for k2 = 1, if the Agent

approaches the wall head-on at speed of sσv the conveyor belt will just be fast

enough to bring it to a halt at the location of the wall.

Wall attraction (thigmotaxis) Although similar, there is an exploitable

difference between the ‘spring-deceleration’ and ‘conveyor-belt’ models: the

‘conveyor-belt’ changes the Agent’s position, x(t), on each step but not its

internal velocity variable v(t). As as result (and as the conveyor-belt intuition

suggests) it will slow down the Agent’s approach towards the wall without

causing it to turn around. This creates a “lingering” or “thigmotactic” effect

whereby whenever the Agent heads towards a wall it may carry on doing so,

without collision, for some time until the stochastic processes governing its

motion (Appendix A.2.1) cause it to turn. Conversely the ‘spring-deceleration’

model has no “thigmotactic” effect since it actively changes the internal velocity
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variable causing the Agent to turn around or “bounce” off the walls.

The relative strengths of these two effects, k1 and k2, are controlled by a

single thigmotaxis parameter, λthig ∈ [0, 1] which governs the trade-off between

these two models.

k1 = 3(1− λthig)
2, k2 = 6λ2

thig. (A.16)

When λthig = 1 only the conveyor belt model is active giving a strong

thigmotactic effects. When λthig = 0 only the spring-deceleration model is

active giving no thigmotactic effect. By default λthig = 0.5. The constants 3

and 6 are tuning parameters chosen by hand in order that direct collisions with

the walls are rare but not impossible.

Although this procedure, intended to smoothly slow the Agent near a

wall, may seem complex, it has two advantages: Firstly, deceleration near

walls is smooth, becoming stronger as the Agent gets nearer and so induces

no physically implausible discontinuities in the velocity. Secondly, it provides

a tunable way by which to control the amount of thigmotaxis (evidenced in

Figure 1.2c,d). Recall that these equations only apply to motion very near the

wall (< dwall) and they can be turned off entirely (s = 0)).

Importing trajectories
Users can override the random motion model by importing their own

trajectory with Agent.import_trajectory(times,positions) where times

is an array of times (not necessarily evenly spaced) and positions is

an array of positions at each time. The trajectory is then interpolated

using scipy.interpolate’s interp1d function following which the standard

RatInABox Agent.update(dt) API is called to move the Agent to a new

position a time dt along the imported trajectory.

When moving along imported trajectories the Agent will not be subject

to the wall repel nor wall collision effects described above.
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Head direction
As well as position and velocity Agents have a head direction, ĥ(t). Head

direction is used by various cell types to determine firing rate including

HeadDirectionCells and (egocentric) VectorCells. By default, head

direction is just the smoothed-then-normalised velocity vector, updated on each

timestep as follows:

h(t+ dt) =

(
1− dt

τh

)
ĥ(t) +

dt

τh

v(t)
∥v(t)∥

(A.17)

ĥ(t+ dt) =
h(t+ dt)

∥h(t+ dt)∥
. (A.18)

By default the amount of smoothing is very small (in 2D τh = 0.15, in

1D there is no smoothing at all) meaning that, to a good approximation,

head direction is simply the normalised velocity vector at time t, ĥ(t) ≈ v̂(t).

However by storing head direction as an independent variable, this makes

available the possibility for users to craft their own, potentially more complex,

head direction dynamics if desired.

I also define the head direction angle ϕh(t) aka. the angle of head direction

vector measured clockwise from the x-axis.

A.2.2 Distance Measures
In many of the cell models it is necessary to calculate the "distance" between

two locations in the Environment (for example to calculate the firing rate of a

Gaussian PlaceCell). This might depend on the type of geometry being used

and the arrangement of walls in the Environment. There are three types of

geometry currently supported:
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euclidean: d(x1, x2) = ∥x1 − x2∥ (A.19)

geodesic: d(x1, x2) = length of shortest wall-avoiding path between

x1 and x2

(A.20)

line_of_sight: d(x1, x2) =


∥x1 − x2∥ if no obstructing wall

∞ otherwise
(A.21)

By default RatInABox typically uses geodesic distance, except in

Environments with more than one additional wall where calculating the shortest

path becomes computationally expensive. In these cases line_of_sight

distance is typically used instead. Furthermore, in Environments with periodic

boundary conditions these distance measures will respect the periodicity by

always using the shortest path between two points, wrapping around boundaries

if necessary. These geometry considerations are what allow RatInABox cell

classes to interact sensibly with walls (e.g. by default place cells won’t bleed

through walls, as observed in the brain). This is hereon referred to as the

“environmental-distance”.

A.2.3 Cell Model Specifications
In the following section, mathematical models are listed for most of the default

provided Neurons subclasses, including all those covered in this chapter. More

cell types and documentation can be found on the codebase. Readers will note

that, oftentimes, parameters are set randomly at the point of initialisation

(e.g. where the place cells are located, the orientation of grid cells, the angular

preference of boundary vector cells etc.). Many of these random parameters are

all set as class attributes and so can be redefined after initialisation if necessary.

For simplicity here I describe default behaviour only.

Maximum and minimum firing rates For most cell classes it is also possible

to set their maximum and minimum firing rates (fmax, fmin). For simplicity
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the formulae provided below are written such that they have a maximum firing

rate of 1.0 Hz and minimum firing rate of 0.0 Hz but readers should be aware

that after evaluation these firing rates are linearly scaled according to

F (t)← (fmax − fmin)F (t) + fmin. (A.22)

Noise By default all Neurons are noiseless with their firing rates entirely

determined by the deterministic mathematical models given below. Smooth

Ornstein Uhlenbeck sampled random noise of coherence timescale τη and

magnitude ση can be added:

η(t) ∼ Xτη,ση,0(t) (A.23)

F (t)← F (t) + η(t) (A.24)

Rates vs. Spikes RatInABox Neurons are fundamentally rate-based. This

means that their firing rate is a continuous function of time. Simultaneously,

at every time-step, spikes are sampled from this firing rate and saved into the

history dataframe in case spiking data is required:

P(Neuron i spikes in [t, t+ dt]) = Fi(t)dt. (A.25)

PlaceCells

A set of locations (the centre of the place fields), {xPC
i }, is randomly sampled

from the Environment. By default these locations sit on a grid uniformly

spanning the Environment to which a small amount of random jitter, half

the scale of the sampled grid, is added. Thus place cell locations appear

‘random’ but initialising in this way ensures all parts of the Environment are

approximately evenly covered with the same density of place fields.

The environmental-distance from the Agent to the place field centres is

calculated (di(t) = d(xPC
i , x(t)). The firing rate is then determined by one of
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the following functions (defaulting to F gaussian):

F
gaussian
i (t) = e−d2

i /2w2
i (A.26)

F
gaussian_threshold
i (t) = max

(
0, e

−d2
i /2w2

i − e−1/2

1− e−1/2

)
(A.27)

F
diff_of_gaussians
i (t; r = 1.5) = e−d2

i /2w2
i − (1/r2)e−d2

i /2(rwi)
2

1− 1/r2 (A.28)

F
top_hat
i (t) =


1 if di ≤ wi

0 otherwise
(A.29)

F one_hot
i (t) = δ(i == argminj(dj)). (A.30)

Where used, wi is the user-provided radius (aka. width) of the place cells

(defaulting to 0.2 m).

GridCells

Each grid cell is assigned a random wave direction θi ∼ U[0,2π], gridscale

λi ∼ U[0.5 m,1.0 m] and phase offset ϕi ∼ U[0,2π]. The firing rate of each grid cell

is given by the thresholded sum of three cosines

Fi(t) =
1
3max

0, cos
(

2πx(t) · eθi

λi
+ ϕi

)
+ cos

(
2πx(t) · eθi+π/3

λi
+ ϕi

)

+ cos
(

2πx(t) · eθi+2π/3
λi

+ ϕi

). (A.31)

eθ is the unit vector pointing in the direction θ. A shifted (as opposed to

rectified) sum of three cosines grid cell is also provided resulting in softer grid

fields

Fi(t) =
2
3

1
3

(
cos

(
2πx(t) · eθi

λi
+ ϕi

)
+ cos

(
2πx(t) · eθi+π/3

λi
+ ϕi

)

+ cos
(

2πx(t) · eθi+2π/3
λi

+ ϕi

))
+

1
2

 (A.32)
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eθ is the unit vector pointing in the direction θ.

VectorCells (parent class only)
VectorCells subclasses include BoundaryVectorCells, ObjectVectorCells

and AgentVectorCells as well as FieldOfView versions of these three classes.

The common trait amongst all types of VectorCell is that each cell is responsive

to a feature of the environment (boundary segments, objects, other agents) at a

preferred distance and angle. The firing rate of each vector cell is given by the

product of two functions; a Gaussian radial function and a von Mises angular

function. When the agent is a euclidean distance d(t) from the feature, at an

angle ϕ(t) the contribution of that feature to the total firing rate is given by

gi(r(t), θ(t)) = exp
(
− (di − d(t))2

2σ2
d,i

)
· fVM(ϕ(t)|ϕi,κi) (A.33)

where fVM is the radial von Mises distribution (a generalisation of a Gaussian

for periodic variables)

fVM(ϕ(t)|ϕi,κi) := exp(κi cos(ϕ(t)− ϕi)). (A.34)

Total firing rate is calculated by summing/integrating these contributions over

all features in the Environment as described in the following sections. Distance

and angular tuning parameters and defined/sampled as follows:

• di is the distance tuning of the vector cell. By default di ∼ U[0.05 m,0.3 m]

• σd,i is the distance tuning width. By default this increases linearly as

a function of di: σd,i = di/β + ξ for constants β and ξ but can be set

otherwise. Values are chosen to match those used by Cothi et al. (2020b).

• ϕi is the angular tuning of the vector cell. By default ϕi ∼ U[0◦,360◦].

• σϕ,i (which defines the von Mises concentration measure κi := 1/√σϕ,i)

is the angular tuning width of the vector cell. By default σϕ,i ∼ U[10◦,30◦].



A.2. Model and Feature Specifications 189

The asymptotic equivalence between a Gaussian and a von Mises

distribution (true for small angular tunings whereby von Mises distributions

of concentration parameter κ approach Gaussian distributions of variance

σ2 = 1/κ) means this model is effectively identical to the original boundary

vector cell model proposed by Hartley et al. (2000) but with the difference that

my vector cells (BVCs included) will not show discontinuities if they have wide

angular tunings of order 360◦.

All vector cells can be either

• allocentric (default): ϕ(t) is the angle subtended between the x-

direction vector ex = [1, 0], and the line between the Agent and the

feature.

• egocentric: ϕ(t) is the angle subtended between the heading direction

of the agent ĥ(t), and the line between the Agent and the feature.

BoundaryVectorCells The environmental features which BoundaryVectorCe

lls (BVCs) respond to are the boundary segments (walls) of the Environment.

The total firing rate of of each cell is given by integrating (computationally I

use a default value of dθ = 2◦ to numerically approximate this integral) the

contributions from the nearest line-of-sight boundary segments (walls occluded

by other walls are not considered) around the full 2π field-of-view;

Fi(t) = Ki

∫ 2π

0
gi(r, θ)dθ, (A.35)

(computationally I use a default value of dθ = 2◦ to numerically approximate

this integral). Ki = 1/ maxx Fi(x) is a normalisation constant calculated

empirically at initialisation such that each BVC has a maximum firing rate

(before scaling) of 1.0 Hz.

ObjectVectorCells ObjectVectorCells (OVCs) respond to objects in the

Environment. Objects are zero-dimensional and can be added anywhere within

the Environment, each object, j, comes with a “type” attribute, tj . Each object

vector cell has a tuning type, ti, and is only responsive to objects of this type.

BoundaryVectorCells
BoundaryVectorCells
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The total firing rate of of each cell is given by the sum of the contributions

from all objects of the correct type in the Environment;

Fi(t) =
∑

objects,j if tj=ti
gi(rj(t), θj(t)). (A.36)

Since eq. (A.33) has a maximum value of 1 by definition the maximum firing

rate of an object vector cell is also 1 Hz (unless multiple objects are closeby)

and no normalisation is required.

AgentVectorCells AgentVectorCells respond to other Agents in the

Environment. All cells in a given class are selective to the same Agent, index

j. The firing rate of each cell is then given by;

Fi(t) = gi(rj(t), θj(t)). (A.37)

FieldOfViewBVCs, FieldOfViewOVCs & FieldOfViewAVCs are a special

case of the above vector cells where the tuning parameters (di, σd,i, ϕi, σϕ,i)

for a set of VectorCells are carefully set so that cells tile a predefined “field

of view”. By default these cells are egocentric and so the field of view (as the

name implies) is defined relative to the heading direction of the Agent; if the

Agent turns the field of view turns with it.

Users define the angular and radial extent of the field of view as well as

the resolution of the cells which tile it. There is some flexiblity for users to

construct complex fields of view but baic API simplifies this process, exposing

a few key parameters:

• rfov = [rmin
fov , rmax

fov ] (default [0.02 m, 0.2 m]): the radial extent of the field

of view.

• θfov (default [0◦, 75◦]): the angular extend of the field of view (measured

from the forward heading direction, symmetric left and right).

• δ0
fov (default 0.02 m): FieldOfView VectorCells all have approximately

circular receptive fields (i.e. the radial Gaussian and angular von Mises in
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eq. (A.33) have matched variances which depend on their tuning distance;

σd,i = di · σϕ,i := δfov(di)). δ0
fov sets the resolution of the inner-most row

of cells in the field of view, δ0
fov = δfov(di = rmin

fov ).

• Manifold type: For “diverging” manifolds (default) cells further away from

the Agent have larger receptive fields δfov(di) = ξ0 + di/β for user-defined

β (default β = 5) and ξ0 := δ0
fov − rmin

fov /β. For “uniform” manifold all

cells have the same sized receptive fields, δfov(di) = δ0
fov.

More complex field of views can be constructed and a tutorial is provided to

show how.

HeadDirectionCells

In 2D Environments each head direction cell has an angular tuning mean θi

and width σi := 1/
√
κi. The response function is then a von Mises in the head

direction of the Agent:

Fi(t) = exp(κi cos(θh(t)− θi)). (A.38)

By default all cells have the same angular tuning width of 30◦ and tuning

means even spaced from 0◦ to 360◦.

In 1D Environments there is always and only exactly n = 2

HeadDirectionCells; one for leftward motion and one for rightward motion.

F1(t) = max(0, sgn(v1D(t)))

F2(t) = max(0, sgn(−v1D(t))) (A.39)

VelocityCells

VelocityCells are a subclass of HeadDirectionCells which encode the full

velocity vector rather than the (normalised) head direction. In this sense they

are similar to HeadDirectionCells but their firing rate will increase with the

speed of the Agent.
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In 2D their firing rate is given by:

Fi(t) =
v2D
σv

exp(κi cos(θv(t)− θi)) (A.40)

where θv(t) is the angle of the velocity vector v(t) anticlockwise from the

x-direction and σv is the likely speed scale of the Agent moving under random

motion (this is chosen so the firing rate of the velocity cell before scaling is

approximately O(1) Hz).

In 1D environments:

F1(t) = max
(

0, v1D(t)

σv + µv

)
,

F2(t) = max
(

0,− v1D(t)

σv + µv
)

)
(A.41)

where the addition of µv accounts for any bias in the motion.

SpeedCell

A single cell encodes the scaled speed of the Agent

F (t) =
∥v(t)∥
σv

(A.42)

where, same as with the VelocityCells, σv (or σv + µv in 1D) is the typical

speed scale of the Agent moving under random motion giving these cells ad

pre-scaled maximum firing rate of O(1) Hz.

PhasePrecessingPlaceCells

PhasePrecessingPlaceCells (a subclass of PlaceCells) display a phenomena

known as phase precession with respect to an underlying theta oscillation; within

each theta cycle the firing rate of a place cell peaks at a phase dependent on

how far through the place field the Agent has travelled. Specifically, as the

Agent enters the receptive field the firing rate peaks at a late phase in the

cycle and as the Agent leaves the receptive field the firing rate peaks at an

early phase in the cycle, hence the name phase precession. Phase precession is
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implemented by modulating the spatial firing rate of PlaceCells with a phase

precession factor, F θi (t),

Fi(t)← Fi(t) · F θi (t), (A.43)

which rises and falls each theta cycle, according to:

F θi (t) = 2πfVM

(
ϕθ(t)

∣∣∣∣∣ϕ∗
i

(
x(t), ẋ(t)

)
,κθ

)
. (A.44)

This is a von Mises factor where ϕθ(t) = 2πνθt mod 2π is the current phase

of the νθ Hz theta-rhythm and ϕ∗
i

(
x(t), ˆ̇x(t)

)
is the current ‘preferred’ theta

phase of a cell which is a function of it’s position x(t) and direction of motion
ˆ̇x(t). This preferred phase is calculated by first establishing how far through a

cells spatial receptive field the Agent has travelled along its current direction

of motion;

di(x(t), ˆ̇x(t)) = (x(t)− xi) · ˆ̇x(t), (A.45)

and then mapping this to a uniform fraction βθ of the range [0, 2π];

ϕ∗
i (t) = π− βθπ

di(t)

σi
. (A.46)

σi is the width of the cell at its boundary, typically defined as σi = wi, except for

gaussian place cells where the boundary is arbitrarily drawn at two standard

deviations σi = 2wi.

The intuition for this formula can be found by considering an Agent

travelling straight through the midline of a circular 2D place field. As the Agent

enters into the receptive field (at which point (x(t)− xi) · ˆ̇x(t) = −σi) the

firing rate will peak at a theta phase of π+ βπ. This then precesses backwards

as it passes through the field until the moment it leaves ((x(t)−xi) · ˆ̇x(t) = σi)

when the firing rate peaks at a phase of π− βπ. This generalises to arbitrary

curved paths through 2D receptive fields. This model has been used and

validated before by Jeewajee et al. (2014). κθ determines the spread of the von
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Mises, i.e. how far from the preferred phase the cell is likely to fire.

RandomSpatialNeurons

RandomSpatialNeurons provide spatially “tuned” inputs for use in instances

where PlaceCells, GridCells, BoundaryVectorCells etc. These neurons

have smooth but, over long distances, random receptive fields (approximately)

generated by sampling from a Gaussian process with a radial basis function

kernel of lengthscale l (default l = 0.1 m). The kernel is given by:

k(x, x′) = exp− d(x,x′)2

2l2 (A.47)

where d(x, x′) is the environmental-distance between two points in the

environment. This distance measure (same as used for PlaceCells, and

VectorCells etc.) accounts for walls in the environment and so the receptive

fields of these neurons are smooth everywhere except across walls (see

Appendix A.2.2).

Firing rates are calculated as follows: At initialisation an array of target

locations, at least as dense as the lengthscale, is sampled across the environment

{xj}. For each neuron, i, j target values, [F̃i]:, is sampled from the multivariate

Normal distribution

[F̃i]: ∼ N (0, K) (A.48)

where K is the covariance matrix with elements Klm = k(xl, xm). This creates

a sparse set of locations, {xj}, and targets, F̃ij , across the Environment:

locations close to each other are likely to have similar targets (and hence similar

firing rates) whereas locations far apart will be uncorrelated.

At inference time the firing rate at an arbitrary position in the

Environment, x(t) (which will not neccesarily be one of the pre-sampled

targets) is estimated by taking the mean of the targets weighted by the kernel

function between the position and the target location:

Fi(x(t)) =
∑
j k(x(t),xj)F̃i,j∑
j k(x(t),xj)

(A.49)
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This weighted average is a cheap and fast approximation to the true

Bayesian Gaussian process which would require the inversion of the covariance

matrix K at each time-step and which I find to be numerically unstable around

exposed walls.

FeedForwardLayer

FeedForwardLayer and NeuralNetworkNeurons are different from other

RatInABox classes; their firing rates are not explicitly determined by properties

(position, velocity, head direction etc.) of their Agent but by the firing rates of

a set of input layers (other ratinabox.Neurons). They allow users to create

arbitrary and trainable “function approximator” Neurons with receptive fields

depending non-trivially on the states of one or many Agent(s).

Each FeedForwardLayer has a list of inputs {Lj}Nj=1 which must be other

ratinabox.Neurons subclasses (e.g. PlaceCells, BoundaryVectorCells,

FeedForwardLayer). For input layer j with nj neurons of firing rates F Lj

k (t)

for k ∈ [1,nj ], a weight matrix is initialised by drawing weights randomly

wLj

ik ∼ N (0, g/√nj) (for default weight initialisation scale g = 1). The firing

rate of the ith FeedForwardLayer neuron is given by weighted summation of

the inputs from all layers plus a bias term:

ri(t) =
N∑
j=1

nj∑
k=1

wLj

ikF
Lj

k (t) + bi (A.50)

Fi(t) = ϕ(ri(t)) (A.51)

where ϕ(x) is a potentially non-linear activation function defaulting to a linear

identity function of unit gain. bi is a constant bias (default zero). A full

list of available activations and their defining parameters can be found in the

utils.py file; these include ReLU, sigmoid, tanh, Retanh, softmax and linear

(the default) functions or users can pass their own bespoke activation function.

Alongside ϕ(ri(t)) this layer also calculates and saves ϕ′(ri(t)) where ϕ′ is

the derivative of the activation function, a necessary quantity for many learning

rules and training algorithms.

https://github.com/RatInABox-Lab/RatInABox/blob/main/ratinabox/utils.py
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NeuralNetworkNeurons

NeuralNetworkNeurons are a generalisation of FeedForwardLayer. Like

FeedForwardLayer they are initialised with a list of inputs {Lj}Nj=1. This

class also receives, at the point of initialisation, a neural network, NN. This

can be any pytorch.nn.module. To calculate the firing rate this class takes

the firing rates of all input layers, concatenates them, and passes them through

the neural network. The firing rate of the ith NeuralNetworkNeurons neuron

is given by the activity of the ith neuron in the output layer of neural network:

Fi(t) = NNi(F⃗ L1(t), F⃗ L2(t), ...︸ ︷︷ ︸
inputs

; w︸︷︷︸
weights

) (A.52)

If no neural network is provided by the user a default network with two hidden

ReLU layers of size 20 is used.

In order to be compatible with the rest of the RatInABox API the firing

rate returned by this class is a numpy array, however, on each update the output

of the pytorch neural network is additionally saved as a torch tensor. By

accessing this tensor, users can take gradients back through the embedded

neural network and train is as I demonstrate in Figure 1.3e.

In Figure 1.3e and an associated demo script a NeuralNetworkNeurons

layer is initialised with N = 1 neuron/output. The inputs to the network come

from a layer of 200 GridCells, ranging in grid scale from 0.2 m to 0.5 m. These

are passed through a neural network with three hidden ReLU layers of size 100

and a linear readout. As the Agent randomly explores its Environment the

network is trained with gradient descent to reduce the L2 error between the

firing rate of the network and that of a “target” rate map (a vector image of the

letters “RIAB”). I use gradient descent with momentum and a learning rate of

η = 0.002 · dt2 (which makes the total rate of learning time-step independent).

Momentum is set to µ = (1− dt
τet

) where τet is the eligibility trace timescale of

10 seconds which smoothes the gradient descent, improving convergence. I find

learning converges after approximately 2 hours and a good approximation of
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the target function is achieved.

A.2.4 Table of Default Parameters
This table lists the RatInABox parameters and their default values. The

‘Key’ column gives the key in a parameters dictionary which can be passed

to each class upon initialisation. Any variables not present in the parameters

dictionary at initialisation will be taken as default. For example, initialising an

Environment of size 2 m (which is not the default size) and adding an Agent

with a mean speed of 0.3 ms−1 (which is not the default size) would be done

as follows:

import ratinabox

from ratinabox . Environment import Environment

from ratinabox .Agent import Agent

Env = Environment ( params = {"scale":2.0}) # initialise non -

default Environment

Ag = Agent(Env , params = {" speed_mean ":0.3}) # initialise non -

default Agent
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Table A.1: Default values, keys, and allowed ranges for ratinabox parameters.
∗ Passed as a kwarg to Agent.update().
∗∗ Passed as a kwarg to FeedForwardLayer.add_input().

Parameter Key Description (unit) Default Acceptable range

Environment()

D dimensionality Dimensionality of the

Environment.

"2D" ["1D", "2D"]

Boundary conditions boundary_conditions Determines agent behavior

at boundaries.

"solid" ["solid", "periodic"]

Scale, s scale Size of the environment

(m).

1.0 R+

Aspect ratio, a aspect Aspect ratio for 2D environ-

ments; width = sa, height

= s.

1.0 R+

dx dx Discretization for plotting

rate maps (m).

0.01 R+

Continued on next page...
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Parameter Key Description (unit) Default Acceptable range

Walls walls List of internal walls

(m). Typically added via

Env.add_wall().

[] Nwalls × 2× 2 array/list

Boundary boundary List of coordinates for non-

rectangular environment

perimeters (m).

None Ncorners × 2 array/list

Holes holes List of coordinate lists, each

bounding a hole (m).

None Nholes ×≥3× 2

array/list

Objects objects List of objects (m). Typi-

cally added via Env.add_-

object().

[] Nobjects × 2 array/list

Agent()

dt dt Time discretisation step

size (s).

0.01 R+

Continued on next page...
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Parameter Key Description (unit) Default Acceptable range

τv speed_coherence_time Timescale for speed deco-

herence in random motion

(s).

0.7 R+

σv (2D) µv (1D) speed_mean 2D: Rayleigh scale for ran-

dom motion.

1D: Normal mean for ran-

dom motion (ms−1).

0.08 2D: R+

1D: R

σv speed_std Normal std dev for random

motion in 1D (ms−1).

0.08 R+

τω rotational_velocity_-

coherence_time

Rotational velocity decoher-

ence timescale (s).

0.08 R+

σω rotational_velocity_-

std

Rotational velocity Normal

std dev (rad s−1).

2π/3 R+

λthig thigmotaxis Thigmotaxis parameter. 0.5 0 < λthig < 1

dwall wall_repel_distance Wall range of influence (m). 0.1 R+

s walls_repel_strength Strength of wall repulsion. 1.0 R+
0

Continued on next page...
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Parameter Key Description (unit) Default Acceptable range

k drift_to_random_-

strength_ratio∗

Ratio of drift velocity to

random motion.

1.0 R+
0

Neurons()

n n Number of neurons. 10 Z+

fmax max_fr Maximum firing rate (Hz). 1.0 R

fmin min_fr Minimum firing rate (Hz). 0.0 fmin < fmax

ση noise_std Std dev of OU noise added

to firing rates (Hz).

0.0 R+

τη noise_coherence_time Timescale of OU noise (s). 0.5 R+

Name name A name to identify the

Neurons instance.

"Neurons" Any string

PlaceCells()

Continued on next page...
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Parameter Key Description (unit) Default Acceptable range

Type description Place cell firing function. "gaussian" ["gaussian",

"gaussian_-

threshold",

"diff_of_gaussians",

"top_hat", "one_hot"]

wi widths Place cell width (m). Can

be a single number or an

array.

0.2 R+

{xPC
i } place_cell_centres Place cell locations (m). If

None, cells are randomly

scattered.

None None or array of

positions

Wall geometry wall_geometry How place cells interact

with walls.

"geodesic" ["geodesic",

"line_of_sight",

"euclidean"]

GridCells()

Continued on next page...
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Parameter Key Description (unit) Default Acceptable range

λi gridscale Grid scales (m), or param-

eters for sampling distribu-

tion.

(0.5,1) array-like or tuple

λi-dist gridscale_-

distribution

Distribution for sampling

grid scales if not provided

manually.

"uniform" See utils.distributi

on_sampler()

θi orientation Orientations (rad), or pa-

rameters for sampling dis-

tribution.

(0,2π) array-like or tuple

θi-dist orientation_-

distribution

Distribution for sampling

orientations if not provided

manually.

"uniform" See utils.distributi

on_sampler()

ϕi phase_offset Phase offsets (rad), or pa-

rameters for sampling dis-

tribution.

(0,2π) array-like or tuple

Continued on next page...

utils.distribution_sampler()
utils.distribution_sampler()
utils.distribution_sampler()
utils.distribution_sampler()
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Parameter Key Description (unit) Default Acceptable range

ϕi-dist phase_offset_-

distribution

Distribution for sampling

phase offsets if not provided

manually.

"uniform" See utils.distributi

on_sampler()

Type description Grid cell firing function. "three_rectified_cosines" ["three_rectified_-

cosines",

"three_shifted_-

cosines"]

VectorCells()

Reference frame reference_frame Allo- or egocentric coor-

dinate frame for receptive

fields.

"allocentric" ["allocentric",

"egocentric"]

Arrangement protocol cell_arrangement How receptive fields are ar-

ranged in the environment.

"random" ["random",

"uniform_manifold",

"diverging_-

manifold", function()]

Continued on next page...

utils.distribution_sampler()
utils.distribution_sampler()
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Parameter Key Description (unit) Default Acceptable range

di tuning_distance Tuning distances (m), or

params for sampling dist.

(0.0,0.3) array-like or tuple

di-dist tuning_distance_-

distribution

Dist. for sampling tuning

distances if not provided

manually.

"uniform" See utils.distributi

on_sampler()

σd,i sigma_distance Distance tuning widths (m),

or params for dist.

(0.08,12) array-like or tuple

σd,i-dist sigma_distance_-

distribution

Dist. for sampling

distance tuning widths.

"diverging" is a special

case.

"diverging" See utils.distributi

on_sampler()

ϕi tuning_angle Tuning angles (◦), or

params for sampling dist.

(0.0,360.0) array-like or tuple

ϕi-dist tuning_angle_-

distribution

Dist. for sampling tuning

angles if not provided man-

ually.

"uniform" See utils.distributi

on_sampler()

Continued on next page...

utils.distribution_sampler()
utils.distribution_sampler()
utils.distribution_sampler()
utils.distribution_sampler()
utils.distribution_sampler()
utils.distribution_sampler()
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Parameter Key Description (unit) Default Acceptable range

σϕ,i sigma_angle Angular tuning widths (◦),

or params for dist.

(10,30) array-like or tuple

σϕ,i-dist sigma_angle_-

distribution

Dist. for sampling angular

tuning widths if not pro-

vided manually.

"uniform" See utils.distributi

on_sampler()

BoundaryVectorCells()

dθ dtheta Size of angular integration

step (◦).

2.0 0 < dθ ≪ 360

ObjectVectorCells()

ti object_tuning_type Tuning type for object vec-

tors.

"random" "random", int, or

array-like

wall-behaviour walls_occlude Whether walls occlude ob-

jects behind them.

True bool

AgentVectorCells()

Continued on next page...

utils.distribution_sampler()
utils.distribution_sampler()
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Parameter Key Description (unit) Default Acceptable range

Other agent, j Other_Agent The Agent these cells are

selective for.

None ratinabox.Agent

wall-behaviour walls_occlude Whether walls occlude

other Agents.

True bool

FieldOfView[X]s() for [X] in [BVC,OVC,AVC]

rfov distance_range Radial extent of the field-of-

view (m).

[0.02,0.4] List of two distances

θfov angle_range Angular range of the field-

of-view (◦).

[0,75] List of two angles

δ0
fov spatial_resolution Resolution of the inner-

most row of vector cells (m).

0.02 R+

β beta Inverse gradient for recep-

tive field size increase with

distance.

5 R+

Continued on next page...
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Parameter Key Description (unit) Default Acceptable range

Arrangement protocol cell_arrangement How the field-of-view recep-

tive fields are constructed.

"diverging_manifold" ["diverging_-

manifold",

"uniform_manifold"]

FeedForwardLayer()

{Lj}Nj=1 input_layers A list of upstream Neurons

classes.

[] N -list of Neurons

Activation function activation_function Defines the activation func-

tion, either by name or as a

custom function.

{"activation": "linear"} See utils.activate()

g w_init_scale∗∗ Scale of random weight ini-

tialisation.

1.0 R+

bi biases Biases, one per neuron (op-

tional).

[0, ..., 0] Rn

NeuralNetworkNeurons()

Continued on next page...
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Parameter Key Description (unit) Default Acceptable range

{Lj}Nj=1 input_layers A list of upstream Neurons

classes.

[] A list of Neurons

NN NeuralNetworkModule Internal neural network

mapping inputs to outputs.

A default is used if None.

None Any torch.nn.Module

RandomSpatialNeurons()

l lengthscale Lengthscale of the Gaussian

process kernel (m).

0.1 R+

Wall geometry wall_geometry How distances are calcu-

lated (and thus how cells

interact with walls).

"geodesic" ["geodesic",

"line_of_sight",

"euclidean"]

PhasePrecessingPlaceCells()

νθ theta_freq The theta frequency (Hz). 10.0 R+

κθ kappa The phase precession

breadth parameter.

1.0 R+

Continued on next page...
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βθ beta The phase precession frac-

tion.

0.5 0.0 < β < 1.0



A.2. Model and Feature Specifications 211

A.2.5 Tutorials and Demos
Numerous resources are provided, some of which are listed here, to streamline

the process of learning RatInABox. Next to each, the key features – which you

may be interested in learning – covered by the resource are described.

• Github readme: Installing and importing RatInABox. Descriptions

and diagrams of key features.

• Simple script: A minimal example of using RatInABox to generate and

display data. Code duplicated below for convenience.

• Extensive script: A more detailed tutorial showing advanced data

generation, and advanced plotting.

• Decoding position example: Data collection. Firing rate to position

decoding. Data plotting.

• Conjunctive cells example: GridCells and HeadDirectionCells are

combined with the function approximator FeedForwardLayer class to

make head direction-selective grid cells (aka. conjunctive grid cells)

• Splitter cells example: Bespoke Environment, Agent and Neurons

subclasses are written to make simple model of splitter cells.

• Successor features example: Loop-shaped Environment is con-

structed. Implementation of TD learning.

• Reinforcement Learning Example: A bespoke ValueNeuron subclass

is defined. Implementation of TD learning. External ‘non-random’ control

of Agent velocity.

• Deep learning example: Deep NeuralNetworkNeurons trained to

approximate a target function. Bespoke Neurons subclass encoding a

.png is written.

https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/simple_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/extensive_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/decoding_position_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/conjunctive_gridcells_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/splitter_cells_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/successor_features_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/deep_learning_example.ipynb
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• Actor-critic example: Deep NeuralNetworkNeurons are used to

implement the actor-critic algorithm in egocentric and allocentric

action/representation spaces.

• Path Integration Example: Extensive use of FeedForwardLayer to

build a deep multilayer network. Implementation of a local Hebbian

learning rule.

• List of plotting functions: Lists and describes all available plotting

functions.

In addition, scripts reproducing all figures in the GitHub readme and this

chapter are provided too. The code comments are nearly comprehensive and

can be referenced for additional understanding where needed.

A simple script
See the GitHub repository for instructions on how to install RatInABox. The

following is a Python script demonstrating a very basic use-case.

Import RatInABox and necessary classes. Initialise a 2D Environment.

Initialise an Agent in the Environment. Initialise some PlaceCells. Simulate

for 20 seconds. Print table of times, position and firing rates. Plot the motion

trajectory, the firing rate timeseries’ and place cell rate maps.

# Import RatInABox

import ratinabox

from ratinabox . Environment import Environment

from ratinabox .Agent import Agent

from ratinabox . Neurons import PlaceCells

import pandas as pd

# Run a very simple simulation

Env = Environment ()

Ag = Agent(Env)

PCs = PlaceCells (Ag)

for i in range(int(20/Ag.dt)):

Ag. update ()

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/actor_critic_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/path_integration_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/list_of_plotting_functions.md
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/readme_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/tree/main/ratinabox


A.3. Demonstrations and Use Cases 213

PCs. update ()

# Export data into a dataframe

pd. DataFrame (Ag. history )

# Plot data

Ag. plot_trajectory ()

PCs. plot_rate_timeseries ()

PCs. plot_rate_map ()

A.2.6 License Information
RatInABox is currently distributed under an MIT License, meaning users are

permitted to use, copy, modify, merge, publish, distribute, sublicense and sell

copies of the software.

A.3 Demonstrations and Use Cases

A.3.1 Figure Details and Parameters
A Jupyter script replicating figs. 1.1 to 1.3 can be found at

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_-

figures.ipynb.

Figure 1.1: Panel (b): Place cells are of type gaussian_threshold with

widths wi = 0.4 m. Panel (e) µv = 0.1 and σv = 0.2.

Figure 1.2: Panel (a): Curve fitting is done using scipy.optimize.curve_fit.

Panel (d): dt = 100 ms. Panel (e) Agent.wall_repel_strength = 2. Panel (e)

uses all available datasets from Sargolini et al. (2006) to create the histograms,

as opposed to panel (a) which only uses one of the recordings.

Figure 1.3: Panel (a): 25 seconds of trajectory data from Sargolini et al. (2006)

is imported, converted into metres, mean centred and then downsampled by

30x (from 50 Hz to 1.66 Hz) before being imported into a RatInABox Agent.

Panel (c): All populations of vector cells had "distance_range" = [0.05,

0.30], "angle_range" = [0,75] and "spatial_resolution" = 0.015. Panel (e):

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
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RatInABox for reinforcement learning experiment is described below. Panel

(f): The average and standard deviation over 1000 repeats is plotted. For the

motion model this is taken for motion updates of a default Agent in a default

Environment (i.e. 2D with solid boundary conditions and no additional walls).

For the numpy matrix calculations the time taken does not include the time

taken to initialise the matrices.

A.3.2 Supplementary Use Cases
In this section it is demonstrated how RatInABox could be used in two simple

experiments: neural decoding and reinforcement learning. The intention is

not to present novel scientific results but rather to demonstrate the capability

of RatInABox to facilitate original scientific research in a variety of fields.

Additional demos beyond these two are given in the online repository and,

as with all figures in this chapter, executable Jupyter scripts are provided to

replicate all figures shown.

Neural Decoding Example
Jupyter script: https://github.com/RatInABox-Lab/RatInABox/blob/ma

in/demos/paper_figures.ipynb.

This demonstration studies, using RatInABox, which type of spatially

modulated cell type is best for decoding position.

Training and testing datasets are first generated. A set of Neurons (n =

Ncells = 20) is initialised in a 1 m square Environment containing a small

barrier (Figure A.1, top). A six minute trajectory is simulated using the

RatInABox random motion model to produce a dataset of inputs {xi}NT
i=1 and

targets {yi}NT
i=1:

xi = F⃗ (x(ti)) ∼ X ⊆ RNcells (A.53)

yi = x(ti) ∼ Y ⊆ R2 (A.54)

where x(ti) is the position of the Agent at time ti and F⃗ is the firing rate of

the neuronal population. These data are split into training (0 < ti < 5 mins,

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
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fig. A.1a purple) and testing (5 < ti < 6 mins, fig. A.1a black) fractions. The

goal of the decoder is to learn a mapping G : X → Y, from firing rates to

positions.

To do this I use Gaussian Process Regression (GPR). GPR is a form of

non-parameteric regression where a prior is placed over the infinite-dimensional

function space P (G(x)) in the form of its covariance kernel C(x, x′) and mean

µ(x) (typically zero). This defines a prior on the targets in the training set

Y = (y1, y2, y3, ...)T,

P (Y) = N (Y; 0, C), (A.55)

where Cij = C(xi, xj) + σηδij is a covariance matrix established over the data

points. The second term accounts for additive noise in the data function.

This can be used to make an inference on the posterior of the target for an

unseen testing data point, P (ytest|{xi}train, {yi}train, xtest) – itself a Gaussian

– the mean of which is taken as the “prediction”. A more comprehensive

reference/tutorial on Gaussian Process Regression is given by MacKay (2003).

I use a radial basis function (aka “squared exponential”) kernel with width

l = l0
√
Ncells which scales with the expected size of the population vector

(∼
√
Ncells, I set l0 =

√
20)

C(x, x′) = exp
(
−∥x− x′∥2

2l2

)
(A.56)

and a small amount of target noise ση = 1e − 10. Note that the closest

‘parameterised’ analog to GPR with an RBF kernel is linear regression against

Gaussian basis features of length scale l. Since the Gaussian is a non-linear

function this means my regression prior is also a non-linear function of firing

rate (and therefore potential non-biologically plausible). I choose to optimise

with the sklearn.gaussian_process.GaussianProcessRegressor package.

Note I do not attempt to optimise the hyperparameters l0 or ση which one would

probably do in a more rigorous experiment. RatInABox parameters are all

default with the exception that the place cells are of type gaussian_threshold



216 Appendix A. Appendix to Chapter 1

and width wi = 0.4 m and the timestep is set to dt = 50 ms.

Figure A.1, panel b (lower) shows the results over comparable sets of

PlaceCells, GridCells and BoundaryVectorCells. Coloured dots show the

prediction – mean of the posterior – of the GPR model “trained” on all points

in the training dataset for that particular cell type. This is plotted on top

of the true trajectory, shown in black. PlaceCells perform best achieving

under 1 cm average decoding error, followed by BoundaryVectorCells then

GridCells where the decoded position is visibly noisy.

Place cells outperform grid cells which outperform BVCs irrespective of

how many cells are used in the basis feature set. More cells gives lower decoding

error. Decoding errors in Figure A.1c are smaller than would be expected if one

decoded from equivalently sized populations of real hippocampal neurons. There

are likely many reasons for this. Real neurons are noisy, communicate sparsely

through spikes rather than rates and, most likely, jointly encode position and

many other behaviourally relevant (or irrelevant) variables simultaneously. All

of these factors could be straightforwardly incorporated into this analysis using

existing RatInABox functionality.

Reinforcement Learning Example
Jupyter script: https://github.com/RatInABox-Lab/RatInABox/blob/ma

in/demos/reinforcement_learning_example.ipynb.

In this example it is demonstrated how RatInABox can be used in a

reinforcement learning (RL) study. The goal is as follows: train an artificial

Agent to explore a 2D Environment where a reward is hidden behind a wall.

The Agent should become proficient at navigating around the wall and towards

the reward from all locations within the Environment.

The core of the approach will rest on model-free RL where an Agent first

learns a value function for a policy (a process known as “policy evaluation”)

and then uses this value function to define a new, improved policy (“policy

improvement”). Iterating between these two procedures (“policy iteration”)

can result in convergence towards an optimal or near-optimal policy.

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
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Figure A.1: RatInABox used for a simple neural decoding experiment. (a) Training
(5 min) and testing (1 min) trajectories are sampled in a 1 m square environment
containing a small barrier. (b) The firing rates of a population of Ncells = 20 cells,
taken over the training trajectory, are used to fit a Gaussian Process regressor model
estimating position. This decoder is then used to decode position from firing rates
on the the unseen testing dataset. Top row shows receptive field for 4 of the 20 cells,
bottom row shows decoding estimate (coloured dots) against ground truth (black
dots). The process is carried out independently for populations of place cells (left),
grid cells (middle) and boundary vector cells (right). (c) Average decoding error
against number of cells, note log scale. Error region shows the standard error in the
mean over 15 random seeds. A Jupyter script demonstrating this experiment is given
in the codebase GitHub repository.

A core pillar of RatInABox is its continuous approach to modelling time

and space. This continuity will require revising typical approaches to how the

value function is defined, approximated and then learned, as well as how motion

control (aka action selection, in discrete space) is performed. This is not a

weakness, in fact I would argue it is one of the strengths. Once complete, the

result is a formulation of model-free RL which bears much higher resemblance

to biological navigation. Furthermore, since most of the complexities of feature

encoding and motion control in continuous time and space are handled by

RatInABox innately this “upgrade” comes almost for free.

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/decoding_position_example.ipynb
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Policy evaluation The value of a motion policy, π, is defined as the decaying

sum (or integral in continuous time) of expected future rewards

V̂(t) ≈ Vπ(t) = E

[
1
τ

∫ ∞

t
e− t′−t

τ R(t′)dt′
]

(A.57)

where the expectation is taken over any stochasticity present in the current

policy (i.e. how the Agent moves) and Environment/reward (although in

this case both will be deterministic). This definition of value is temporally

continuous. The key differences compared to the more common form – where

value is written as a discrete sum of rewards over future timesteps – is that

it is now a continuous integral over a reward density function and temporal

discounting is done by exponentially decaying future reward over a time period

τ . The prefactor of 1/τ is an optional constant of normalisation.

In order to learn the value function, a new ValueNeuron class is

defined. The ValueNeuron, which is a subclass of FeedForwardLayer, receives

feedforward input from a set of features corresponding to PlaceCells scattered

across the Environment with firing rates {ϕi}
Nϕ=1000
i=1 where ϕi(x) = Fi(x) is

the firing rate of the ith place cell at location x. This linear approximation to

the value function can be written as

V̂(I(t); w) =
N∑
i=1

wiϕi(t). (A.58)

I can take the temporal derivative of eq. (A.57) and derive a consistency

equation (analogous to the Bellman equation) satisfied by this value function.

This naturally gives a temporal difference-style update rule which relies on

“bootstrapping” (the current estimate of the value function is used in lieu of the

true value function) to optimize the weights of the value function approximation.

A good reference for continuous RL is Doya (2000) if readers wish to know

more about deriving this learning rule.

δwi(t) = η

(
R(t) + τ

dV̂(t)
dt
− V̂(t)

)
ei(t). (A.59)
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For now it suffices to observe that this learning rule is very similar to the

temporally discrete TD-update rule. The first term in brackets represents the

continuous analog of the temporal difference error (in fact, if you rediscretise

using the Euler formula V̇(t) = V(t+dt)−V(t)
dt to replace the derivative, and set

dt = 1, you will see they are identical). The second term is the ‘eligibility trace’

determining to which state – or basis feature – credit for the TD error should

be assigned. Using an eligibility trace is optional, and it could just be replaced

with Œi(t), however doing so aids stability of the learning. It is defined as:

ei(t) =
1
τe

∫ t

−∞
e− t−t′

τe Œi(t
′)dt′. (A.60)

In total the newly defined ValueNeuron does three things, schematically laid

out in Figure A.2a:

1. It linearly summates its PlaceCell inputs, eq. (A.58).

2. It stores and updates the eligibility traces, eq. (A.60).

3. It implements the learning rule, eq. (A.59), which requires access to the

reward density function R(t), the eligibility traces ei(t), its firing rate

V̂(t) and the temporal derivative of its firing rate dV̂(t)
dt .

I use a temporal discount horizon of τ = 10 s and an eligibility trace

timescale of τe = 5 s. Input features are a set of Nϕ = 1000 PlaceCells of

random widths uniformly sampled from 0.04 m to 0.4 m (Figure A.2b). The

reward density function is taken to be the firing rate of a single PlaceCell

positioned behind the wall of type top_hat and width 0.2 m (Figure A.2c).

The learning rate is set to η = 1e− 4.

Policy improvement The model now has a neuron capable of learning the

value function under its current policy (“policy evaluation”). This is then used

to improve the policy (“policy improvement”) towards an optimal one. To do

this, the “drift velocity” feature is exploited (see Appendix A.2.1). I set the

drift velocity to be 3 times the mean velocity in the direction of steepest ascent
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of the value function.

vdrift(t) = 3σv∇̂xV̂(x(t)). (A.61)

This way the Agent is encouraged to move towards regions of higher and

higher value. Note that calculating this gradient is a local calculation and

can be done on-the-fly by the Agent, as it locomotes. This method of value

ascent is essentially a continuous analog of a similar algorithm, “greedy policy

optimization”, used in discrete action spaces.

Policy iteration Learning is done in batches of 8 episodes each. An episode

consists of the Agent being reset to a random location in the Environment and

left to explore. The episode ends when the Agent gets close to the reward or

times out (60 seconds). At the start of each batch the current value function is

copied and cached - this cached version is used, but not updated, to determine

the drift velocity in eq. (A.61) for the duration of the next batch. Varying the

strength of the drift bias relative to the random motion allows for control of

the trade of between exploration and exploitation. Scheduling goes as follows:

initially the drift_to_random_strength_ratio is set to k = 0.1 (i.e. mostly

random exploration). On each successful episode which did not end in a timeout,

this is increased by 10% up to a maximum of k = 1 (approximately equal

contributions of random and drift motions).

Results Initially the input weights to the ValueNeuron are drawn randomly

wi ∼ N (0, 1√
Nϕ

) and therefore the value map (and Agent motion) is random

(Figure A.2d, left). After 10 batches (80 episodes) the Agent has successfully

learnt a near-optimal value function showing high-value in and near to the

corridor, and low values elsewhere. This allows it to rapidly navigate towards

the reward, avoiding the obstructing wall, from all locations in the Environment

(Figure A.2d, middle, and Figure 1.3b).

By virtue of using continuous action control in continuous space, the

trajectories of the trained Agent look highly realistic compared to typical

gridworld RL. Since PlaceCells in RatInABox interact adaptively with the
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Environment, when a small gap is created at the base of the obstructing wall

the receptive fields of PlaceCells near this gap “spill” through. This causes

an instantaneous update to the perceived value function and therefore policy

allowing the Agent to immediately find a short cut to the reward with no

additional training, a form of zero-shot learning (Figure A.2d, right).
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(a)
Features

riab.PlaceCells()

<latexit sha1_base64="L2Sngzo05VobsElWEHSXGYKiWGU="></latexit>

�i(x)

Value neuron, 
riab.FeedForwardLayer()

<latexit sha1_base64="i0Vv8xJaT3OUnX7AnoqDlU4Vcjs="></latexit>

V̂(x) =
X

i

wi�i(x)

Reward 
riab.PlaceCells()

<latexit sha1_base64="61XgTBiUIgISSZTugPFm+/dy8uE=">AAACCHicbVDJSgNBEO2JW4xbXG4ebAxCvAwzWSbxFvDiMYpZIAmhp9OTNOlZ6O4RwzBHL/6KFw+KePUTvPk39kwMuD0oeLxXRVU9O2BUSMP40DJLyyura9n13Mbm1vZOfnevLfyQY9LCPvN510aCMOqRlqSSkW7ACXJtRjr29DzxOzeEC+p713IWkIGLxh51KEZSScP8Ud9FciKc6CouptR2ooV0G8enw3zB0M+sslEtQUMvl61yrZqQilWrV6GpGykKjQMnRXOYf++PfBy6xJOYISF6phHIQYS4pJiRONcPBQkQnqIx6SnqIZeIQZQ+EsMTpYyg43NVnoSp+n0iQq4QM9dWnemNv71E/M/rhdKpDyLqBaEkHp4vckIGpQ+TVOCIcoIlmymCMKfqVogniCMsVXa5NIT5p/AvWYTQLummpRuXKo0KmCMLDsExKAIT1EADXIAmaAEM7sADeALP2r32qL1or/PWjPY1sw9+QHv7BOJRnW0=</latexit>
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Figure A.2: RatInABox used in a simple reinforcement learning project. (a) A
schematic of the 1 layer linear network. Using a simple model-free policy iteration
algorithm the Agent, initially moving under a random motion policy, learns to
approach an optimal policy for finding a reward behind a wall. The policy iteration
algorithm alternates between (left) calculating the value function using temporally
continuous TD learning and (right) using this to define an improved policy by setting
the drift velocity of the Agent to be proportional to the gradient of the value function
(a roughly continuous analog for the ϵ-greedy algorithm). (b) 1000 PlaceCells act
as a continuous feature basis for learning the value function. (c) The reward is also
a (top-hat) PlaceCell, hidden behind the obstructing wall. (d) A ValueNeuron (a
bespoke Neurons subclass defined for this demonstration) estimates the policy value
function as a linear combination of the basis features (heatmap) and improves this
using TD learning. After learning the Agent is able to accurately navigate around the
wall towards the reward (middle). Because PlaceCells in RatInABox are continuous
and interact adaptively with the Environment when a small gap is opened in the wall
place fields corresponding to place cells near this gap automatically bleed through it,
and therefore so does the value function. This allows the Agent to find a shortcut to
the reward with zero additional training. A Jupyter script replicating this project is
given in the demos folder GitHub repository.

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
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Appendix to Chapter 2

B.1 Code Availability
Code to generate the results in Chapter 2 is available at https://github.com

/TomGeorge1234/ThetaSequencesAreEligibilityTraces.

B.2 Task Formulation and Temporal Differ-

ence Learning
In my model an agent at position xT (t) moves at a constant speed, ẋT (t) =

vT = 10 cm s−1 from left to right around a periodic 1D track of circumference

2 m. A small reward density, R(x), is centred at the far end of the track

(Figure 2.1b). The goal of the agent is to learn the value function for the

current policy, defined as the discounted integral of future reward

V π(x) =
∫ ∞

t
e− t′−t

τ R(x(t′))dt′ | x(t) = x (B.1)

over a discount time horizon τ = 4 s. This is done using a linear approximation,

a weighted sum of independent features

V̂ π(x) =
∑
i

wiϕi(x) ≈ V π(x). (B.2)

https://github.com/TomGeorge1234/ThetaSequencesAreEligibilityTraces
https://github.com/TomGeorge1234/ThetaSequencesAreEligibilityTraces
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Famously, this problem can be solved with a temporal difference learning rule

ẇi(t) = ηδ(t)zi(t) (B.3)

where δ(t) is the (temporally continuous) TD error

δ(t) = R(t) +
dV̂ π(t)

dt
− V̂ (t)

τ
(B.4)

and zi(t) is the eligibility trace of the ith feature

zi(t) =
∫ t

−∞
e

t′−t
τz ϕi(x(t

′))dt′. (B.5)

where τz ∈ [0, τ ] is the decay time scale of the eligibility trace. The basis features

are a set of 200 small Gaussian receptive fields (σ = 2 cm, 95.45% firing field

therefore measures 4σ = 8 cm), roughly analogous to place cells (O’Keefe et al.

1971) in the hippocampal formation, evenly spaced at 1 cm intervals along the

track. Their small size means each feature overlaps with approximately only

its nearest neighbours. The reward density is another equally sized Gaussian

at 1.95 m along the track. I choose this policy evaluation task because it

admits an analytical solution for V π(x). Since the policy is non-stochastic

one can evaluate the integral in eq. (B.1) accounting for the circular boundary

conditions and compare this to the value estimate learnt by agents using

temporal difference learning. All simulations (agent trajectory, theta sweeps,

neural activities and policy evaluation) were produced using the RatInABox

simulation package (George et al. 2024).

B.2.1 Relation to Discrete RL and TD(λ)
It is more common to see the temporally-discrete formulation of policy

evaluation with TD learning (nb. for a full discussion/derivation of continuous
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RL see Doya (2000)), summarised by

V π(st) =
∞∑
t′=t

γt
′−tR(st′) (B.6)

zt =
t∑

t′=−∞
(λγ)t−t

′
R(st′), (B.7)

where t is now a discrete integer state index. γ, the ’discount factor’ determines

over how many future states the agent cares about reward and can be compared

to τ , the temporally continuous ’discount time horizon’, determining how long

(as a unit of time) into the future the agent cares about reward. λ controls the

decay-rate of the eligibility trace from λ = 0 (heavily bootstrapped regime)

to λ = 1 (direct credit assignment, aka. online Monte Carlo). This discrete

formulation is equivalent to the continuous one used here in the integral limit

of short timesteps where the following relationships become apparent

γ = e− dt
τ (B.8)

γλ = e− dt
τz . (B.9)

This enables a link to be made between the two extremes of TD(λ) as

TD(0)⇔ τz = 0 (B.10)

TD(1)⇔ τz = τ . (B.11)

TD(0) (full-bootstrapping regime) occurs when the eligibility trace timescale

falls to zero and TD(1) (Monte Carlo style learning) equates to when the

eligibilty trace timescale matches the discount time horizon.

B.3 The Artificial Agent
The artificial agent learns according to the above TD learning rules and policy

described in Appendix B.2 for a variety of eligibility trace timescales summarised

in Table B.1: Note the inclusion of two extremes: TD(1) (τz = τ = 4) and
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τz/s 4 2 1 0.5 0.25 0.125
τ/s 4 4 4 4 4 4
ηopt 0.4 0.5 0.6 0.8 1.1 1.3

Table B.1: Learning parameters for the artificial agents.

TD(∼0) (τz = 0.125 ≈ 0). In order to be sure that small learning rates

were not bottlenecking learning I optimised η for each experiment by way of

hyperparameter sweep (optimal value shown in table). When comparing the

value estimate V̂ π(x) to the analytic value function V π(x) I use the coefficient

of determination

R2(V π, V̂ π) = 1−
∑
x(V̂

π(x)− V π(x))2∑
x(V π(x)− ⟨V π(x)⟩x)

(B.12)

where the value estimate is first normalised to have the same maximum as

V π(x) so, strictly, I am only comparing the shapes of the curves in Figure 2.1cd

(bottom panels). The agent is allowed to explore and learn for a total of 640

s, exactly 32 laps, or until such a point that R2(V π, V̂ π) has been above 0.99

for the entire previous lap, whichever comes first. Agents start from a random

initial position xT (0) ∼ U(0 m, 2 m). Plots/error bars show the average/std

over 50 such experiments in the case of the artificial agent and 10 in the case

of the biological agent.

B.4 The Biological Agent
The biological agent differs from the artificial agent in two ways:

• Short eligibility traces: τz is fixed to a 0.01 s to emulate the biological

constraint that neuronal memory times are short O(10) ms.

• Theta sequences: The firing rate of the features and the reward density

are determined by the encoded position of the agent xE(t), not the true

position xT (t). xE(t) sweeps from behind to in front of xT (t) in each

theta cycle as described below.
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Theta is modelled as a background oscillation of frequency νθ = 1/Tθ = 5 Hz

with a phase (used later) defined as

ϕθ(t) =
t

Tθ
mod 1 (B.13)

During the middle fraction, β = 0.75 of each theta cycle xE(t) traverses

symmetrically from behind to in front of the agent’s true position at a speed

of vE = vT + vS where vS is the speed of xE(t) in the reference frame of the

true position. Outside this window there is no registered position and all firing

rates are zero. This can be stated formally as

xE(t) =

 xT (t) + (ϕθ − 0.5)TθvS , if 1−β
2 < ϕθ(t) ≤ 1+β

2

None, otherwise
(B.14)

which determines the neural firing rates used for learning ϕi(xE(t)) and

R(xE(t)) where ϕi(None) = R(None) := 0. This leads to the core hypothesis

of this chapter: Since theta sequences traverse space faster than the

real agent, the neural trajectory traverses the features faster than

the real agent, compressing them. This compression means short

eligibility traces, though remaining short, have more bang for their

buck, effectively extending them. The compression factor is

κ :
vE
vT

=⇒ τ eff
z = κτz. (B.15)

Additionally, the same compression effect applies to the discount time horizon,

τ , such that, in uncompressed time coordinates it will have effectively increased,

τ eff = κτ . (B.16)

so in order to learn a value function with (effective) discount time horizon of

τ = 4 s, τ must be decreased accordingly. Table B.2 show the sweep velocities

for six agents tested. These are carefully selected to match – according to
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vE/ms−1 40 20 10 5 2.5 1.25
κ 400 200 100 50 25 12.5

τz/s 0.01 0.01 0.01 0.01 0.01 0.01
τ / s 0.01 0.02 0.04 0.08 0.16 0.32
ηopt 8 8 2 2 2 0.75
τ eff 4 4 4 4 4 4
τ eff
z /s 4 2 1 0.5 0.25 0.125

Table B.2: Learning parameters for the biological agents, Figure 2.1d and their
artificial equivalents.

my theory – the eligibility trace timescales of the six artificial agents. Hence

the final two rows show the ’effective’ behaviour, i.e., if the theory is correct,

which artificial agent (no theta sequences and any choice of τz) would this be

equivalent to. Learning only occurs within sequences (1−β
2 < ϕθ(t) ≤ 1+β

2 ).

Outside this range (when there is no relevant data to learn from) learning is

turned off (η = 0) reminiscent of the observation that hippocampal plasticity

(LTP) oscillates significantly within each theta cycle (Hasselmo et al. 2014).

B.5 Analysis of Discontinuities in Theta Se-

quence Resets
The results shown in Figure 2.1d for the biological agent don’t precisely converge

to the value function for the slower sequences. I propose this may be due to ’loop-

effects’. At the end of each theta cycle the sequence resets by discontinuously

jumping back to a location behind the agent, Figure 2.1a. This discontinuity

could induce errors to grow within the value estimate: whereas the neural

activity during the sequence can be seen as a sped-up replica of the true state

trajectory, this discontinuity does not reflect any real transition statistics. It

is notable, therefore, that performance decay isn’t catastrophic (all biological

agents learn reasonable estimates of the value function) and is less pronounced

for faster sequences, perhaps because the states at either end are further apart

and interfere less. It is possible (but not tested) that the fraction of the cycle

where there is no sweep (1− β) allows existing short ETs to decay to zero
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essentially “forgetting” the jump transition and ameliorating the problem.
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Appendix to Chapter 3

C.1 Code Availability
Code to generate the results in Chapter 3 is available at https://github.com

/TomGeorge1234/STDP-SR.

C.2 Spiking Neuron Model and STDP Learn-

ing Rule
The model comprises an agent exploring a maze where its position x at time t

is encoded by the instantaneous firing of a population of N CA3 basis features,

fj(x, t) for j ∈ {1, . . . ,N}. Each has a spatial receptive field given by a

thresholded Gaussian of peak firing rate 5 Hz:

fxj
(
x(t)

)
=


Gaussian

(
xj , σ

)
− c if ||x(t)− xj || < 1m

0 otherwise
(C.1)

where xj is the location of the field peak, σ = 1m is the standard deviation

and c is a positive constant that keeps fxj continuous at the threshold.

The theta phase of the hippocampal local field potential oscillates at 10

Hz and is denoted by ϕθ(t) ∈ [0, 2π]. Phase precession suppresses the firing

rate of a basis feature for all but a short period within each theta cycle. This

period (and subsequently the time when spikes are produced, described in

https://github.com/TomGeorge1234/STDP-SR
https://github.com/TomGeorge1234/STDP-SR
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more detail below) precesses earlier in each theta cycle as the agent crosses the

spatial receptive field. Specifically, this is implemented by simply multiplying

the spatial firing rate fxj by a theta modulation factor which rises and falls

according to a von Mises distribution in each theta cycle, peaking at a ‘preferred

phase’, ϕ∗
j , which depends on how far through the receptive field the agent has

travelled (hence the spike timings implicitly encode location);

fθj
(
ϕθ(t)

)
= VonMises

(
ϕ∗
i ,κ

)
(C.2)

where κ = 1 is the concentration parameter of the von Mises distribution. These

basis features in turn drive a population of N downstream ‘STDP successor

features’ (Equation (3.2)).

Firing rates of both populations (fj(x,ϕθ) and ψ̃i(x,ϕθ)) are converted to

spike trains according to an inhomogeneous Poisson process. These spikes drive

learning in the synaptic weight matrix, Wij , according to an STDP learning

rule (details below). In summary, if a presynaptic CA3 basis feature fires

immediately before a postsynaptic CA1 successor feature the binding strength

between these cells is strengthened. Conversely, if they fire in the opposite

order, their binding strength is weakened.

For comparison, successor feature learning is also implemented using a

temporal difference (TD) learning rule, referred to as ‘TD successor features’,

ψi(x), to provide a ground truth against which the STDP successor features

are compared. Like STDP successor features, these are constructed as a linear

combination of basis features (Equation (3.3)).

Temporal difference learning updates Mij as follows

Mij ← Mij + ηδTD
ij (C.3)

where δTD
ij is the temporal difference error, which I derive below. In

reinforcement learning the temporal difference error is used to learn discounted

value functions (successor features can be considered a special type of value
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function). It works by comparing an unbiased sample of the true value function

to the currently held estimate. The difference between these is known as

the temporal difference error and is used to update the value estimate until,

eventually, it converges on (or close to) the true value function.

C.3 Phase Precession Details
In this hippocampal model CA3 place cells, referred to as basis features and

indexed by j, have thresholded Gaussian receptive fields. The threshold radius

is σ = 1 m and peak firing rate is F = 5 Hz. Mathematically, this is written as

fxj (x(t)) =
F

1− e− 1
2

[
e

−
∥x(t)−xj∥2

2σ2 − e− 1
2

]
+

, (C.4)

where [f(x)]+ = max
(
0, f(x)

)
, xj is the centre of the receptive field and x(t)

is the current location of the agent.

Phase precession is implemented by multiplying the spatial firing rate,

fxj (x), by a phase precession factor

fθj (ϕθ(t)) = 2πfVM

(
ϕθ(t)

∣∣∣∣ϕ∗
j (x),κ

)
. (C.5)

where fVM(x|µ,κ) denotes the circular von Mises distribution on x ∈ (0, 2π]

with mean µ = ϕ∗
j (x) and spread parameter κ = 1. This factor is large only

when the current theta phase,

ϕθ(t) = 2πνθt (mod 2π), (C.6)

which oscillates at νθ = 10 Hz, is close to the cell’s ‘preferred’ theta phase,

ϕ∗
j (x(t)) = π+ βπdj(x(t)). (C.7)

dj(x(t)) ∈ [−1, 1] tracks how far through the cell’s spatial receptive field, as



234 Appendix C. Appendix to Chapter 3

measured in units of σ, the agent has travelled:

dj(x(t)) =
(x(t)− xj) · ẋ(t)

∥ẋ(t)∥
σ

. (C.8)

In instances where the agent travels directly across the centre of a cell (as is

the case in 1D environments) then (x(t)− xj) and its normalised velocity (a

vector of length 1, pointing in the direction of travel) ẋ(t)
∥ẋ(t)∥ are parallel such

that dj(x) progresses smoothly in time from its minimum, -1, to its maximum,

1. In general, however, this extends to any arbitrary curved path an agent

might take across the cell and matches the model used in Jeewajee et al. (2014).

I fit β and κ to biological data in Fig. 5a of Jeewajee et al. (2014) Jeewajee

et al. (2014) (β = 0.5, κ = 1). The factor of 2π normalises this term, although

the instantaneous firing may briefly rise above the spatial firing rate fxj (x), the

average firing rate over the entire theta cycle is still given by the spatial factor

fxj (x). In total, the instantaneous firing rate of the basis feature is given by

the product of the spatial and phase precession factors (Equation (3.1)).

Note that the firing rate of a cell depends explicitly on its location through

the spatial receptive field (its “rate code”) and implicitly on location through

the phase precession factor (its “spike-time code”) where location dependence

is hidden inside the calculation of the preferred theta phase. Notably, the effect

of phase precession is only visible on rapid “sub-theta” timescales. Its effect

disappears when averaging over any timescale, Tav substantially longer than

theta timescale of Tθ = 0.1 s:

1
Tav

∫ t+Tav

t
fj(x(t),ϕθ(t′))dt′ ≈

1
Tav

∫ t+Tav

t
fxj (x(t′))dt′ for Tav >> Tθ

(C.9)

This is important since it implies that the effect of phase precession is only

important for synaptic processes with very short integration timescales, for

example, STDP.

My phase precession model is “independent” (essentially identical to
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Chadwick et al. (2015) Chadwick et al. (2015)) in the sense that each place

cell phase precesses independently from what the other place cells are doing.

In this model, phase precession directly leads to theta sweeps as shown in

Figure 3.1. Another class of models referred to as “coordinated assembly”

models Harris (2005) hypothesise that internal dynamics drive theta sweeps

within each cycle because assemblies (aka place cells) dynamically excite one

another in a temporal chain. In these models theta sweeps directly lead to phase

precession. Feng and colleagues draw a distinction between theta precession and

theta sequence, observing that while independent theta precession is evident

right away in novel environments, longer and more stereotyped theta sequences

develop over time Feng et al. (2015). Since I am considering the effect of theta

precession on the formation of place field shape, the independent model is

appropriate for this setting. I believe that considering how this model might

relate to the formation of theta sequences or what implications theta sequences

have for this model is an exciting direction for future work.

C.4 Synaptic Learning via STDP
STDP is a discrete learning rule: if a presynaptic neuron j fires before a

postsynaptic neuron i their binding strength Wij) is potentiated, conversely if

the postsynaptic neuron fires before the presynaptic then weight is depressed.

This is implemented as follows.

First, I convert the firing rates to spike trains. I sample, for each neuron,

from an inhomogeneous spike train with rate parameter fj(x, t) (for presynaptic

basis features) or ψ̃i(x, t) for postsynaptic successor features. This is done over

the period [0,T ] across which the animal is exploring.

(
fj(x, t

)
, [0,T ]) Poisson7−→ {tpre

j } ,
(
ψ̃i(x, t), [0,T ]

)
Poisson7−→ {tpost

i } (C.10)

Asymmetric Hebbian STDP is implemented online using a trace learning

rule. Each presynaptic spike from CA3 cell, indexed j, increments an

otherwise decaying memory trace, T pre
j (t), and likewise an analogous trace
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for postsynaptic spikes from CA1, T post
i (t). I matched the STDP plasticity

window decay times to experimental data: τpre = 20 ms and τpost = 40 ms

Bush et al. (2010).

τpredT
pre
j (t)

dt
= −T pre

j (t) +
∑

t′∼{tpre
j }

δ(t− t′) (C.11)

τpostdT
post
i (t)

dt
= −T post

i (t) +
∑

t′∼{tpost
i }

δ(t− t′). (C.12)

The model is simplified by fixing weights during learning:

ψ̃i(x, t) =
∑
j

WA
ijfj(x, t) During learning (C.13)

where WA
ij will be referred to as the “anchoring” weights which, up until now,

have been set to the identity WA
ij = δij . Since fj(x, t) is the phase precessing

features, ψ̃i(x, t) also inherits phase precession from these features mapped

through WA
ij . Fixing the weights means that during learning the effect of

changes in Wij are not propagated to the successor features (CA1), their

influence is only considered during post-learning recall broadly analogous to

the distinct encoding and retrieval phases that have been hypothesised to

underpin hippocampal function Hasselmo et al. (2002). I relax this assumption

in Figure C.2 and allow Wij to be updated online, showing this isn’t essential.

After a period, [0,T ] of exploration the synaptic weights are updated on

aggregate to account for STDP.

Wij(T ) = Wij(0) + η
[
apre ∑

ti∼{tpost
i }

δ(t− ti)T pre
j (t)

︸ ︷︷ ︸
“pre-before-post potentiations”

+ apost ∑
tj∼{tpre

j }
δ(t− tj)T post

i (t)

︸ ︷︷ ︸
“post-before-pre depressions”

] (C.14)

where the second terms accounts for the cumulative potentiation and depression
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due to STDP from spikes in the CA3 and CA1 populations. η is the learning

rate (here set to 0.01) and apre and apost give the relative amounts of pre-before-

post potentiation and post-before-pre depression, set to match experimental

data from Bi et al. (1998) as 1 and −0.4 respectively. The weights are initialised

to the identity: Wij(0) = δij .

Finally, when analysing the successor features after learning I use the

updated weight matrix, not the anchoring weights, (and turn off phase precession

since I am only interested in rate maps)

ψ̃i(x) =
∑
j

Wij(T )f
x
j (x). After learning (C.15)

C.5 Temporal Difference Learning
To test the hypothesis that STDP is a good approximation to TD learning,

the TD successor features were simultaneously computed, defined as the total

expected future firing of a basis feature:

ψi(x) = E

[ ∫ ∞

t

1
τ
e− t′−t

τ fxi
(
x(t′)

)
dt′

∣∣∣∣ x(t) = x
]
. (C.16)

τ is the temporal discounting time-horizon (related to γ, the discount factor

used in reinforcement learning on temporally discretised MDPs, γ = e− dt
τ )

and the expectation is over trajectories initiated at position x. This formula

explains the one-to-one correspondence between CA3 cells and CA1 cells in

my hippocampal model (Figure 3.1b): each CA1 cell, indexed i, learns to

approximate the TD successor feature for its target basis feature, also indexed i.

I set the discount timescale to τ = 4 s to match relevant behavioural timescales

for an animal exploring a small maze environment where behavioural decisions,

such as whether to turn left or right, need to be made with respect to optimising

future rewards occurring on the order of seconds.

I learn these successor features by tuning the weights of a linear
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decomposition over the basis feature set:

ψi(x) =
∑
j

Mijf
x
j (x), (C.17)

this way Mij can be directly compared to the STDP weight matrix Wij .

My TD successor matrix, Mij , should not be confused with the successor

representation as defined in Stachenfeld et al. Stachenfeld et al. (2017) and

denoted M(si, sj), though they are analogous. Mij can be thought of as an

analogue to M(si, sj) for spatially continuous (i.e. not one-hot) basis features,

I show in Appendix C.6.1 that they are equal (strictly, M(s, s′) = MT
ij) in the

limit of a discrete one-hot place cells.

Temporal difference learning The temporal difference (TD) update rule is

used to learn the TD successor matrix (Equation (C.17)). The standard TD(0)

learning rule for a linear value function, ψi(x), which basis feature weights Mij

is Sutton et al. (1998):

Mij ← Mij + ηδif
x
j (x) (C.18)

where δi is the observed TD-error for the ith successor feature and η is the

learning rate. Note that I am only considering the spatial component of

the firing rate, fxj (x), not the phase modulation component, fθj (x), which

(as shown) would average away over any timescale significantly longer than

the theta timescale (100 ms). For now I will drop the superscript and write

fxj (x) = fj(x)

To find the TD-error I must derive a temporally continuous analogue

of the Bellman equation. Following Doya (2000) I take the derivative of

Equation (C.16) which gives a consistency equation on the successor feature as
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follows:

d

dt
ψi
(
x(t)

)
=

d

dt

∫ ∞

t

1
τ
e− t′−t

τ fi
(
x(t′)

)
dt′ (C.19)

=
1
τ

(
ψi
(
x(t)

)
− fi

(
x(t)

))
(C.20)

This gives a continuous TD-error of the form

δi(t) =
d

dt
ψi
(
x(t)

)
+

1
τ

(
fi
(
x(t)

)
− ψi

(
x(t)

))
(C.21)

which can be rediscretised and rewritten by Taylor expanding the derivative

(ψi(t) = ψi(t)−ψi(t−dt)
dt ) to give

δi(t) =
1
dt

(
dt

τ
fi
(
x(t)

)
+
(
1− dt

τ

)
ψi
(
x(t)

)
− ψi

(
x(t− dt)

))
. (C.22)

This looks like a conventional TD-error term (typically something like δt =

Rt + γVt − Vt−1) except that we can choose dt (the timestep between learning

updates) freely. Finally expanding ψi(x(t)) using (Equation (3.3)) and

substituting this back into Equation (C.18) gives the update rule:

Mij ← Mij +
η

dt

[
dt

τ
fi
(
x(t)

)
+
∑
k

Mik

[(
1− dt

τ

)
fk
(
x(t)

)
− fk

(
x(t− dt)

]]
fj
(
x(t)

)
.

(C.23)

This rule doesn’t stipulate a fixed time step between updates. Unlike

traditional TD updates rules on discrete MDPs, dt can take any positive value.

The ability to adaptively vary dt has potentially underexplored applications for

efficient learning: when information density is high (e.g. when exploring new

or complex environments, or during a compressed replay event Skaggs et al.

(1996a)) it may be desirable to learn regularly by setting dt small. Conversely

when the information density is low (for example in well known or simple

environments) or learning is undesirable (for example the agent is aware that
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a change to the environment is transient and should not be committed to

memory), dt can be increased to slow learning and save energy. In practice,

the agent is set to perform a learning update approximately every 1 cm along

its trajectory (dt ≈ 0.1 s).

I add a small amount of L2 regularisation by adding the term −2ηλM to

the right hand side of Equation (C.24). This breaks the degeneracy in Mij

caused by having a set of basis features which is overly rich to construct the

successor features and can be interpreted, roughly, as a mild energy constraint

favouring smaller synaptic connectomes. In total the full update rule from our

TD successor matrix in matrix form is given by

M← M+
η

dt

[
dt

τ
f
(
x(t)

)
+ M

[(
1− dt

τ

)
f
(
x(t)

)
− f

(
x(t− dt)

]]
fT
(
x(t)

)
− 2ηλM. (C.24)

C.6 Continuous Successor Features
Typically, as in Stachenfeld et al. Stachenfeld et al. (2017), the successor

representation is calculated in discretised time and space. M(si, sj) encodes the

expected discounted future occupancy of state sj along a trajectory initiated in

state si:

M(si, sj) = E

∑
t=0

γtδ(st = sj)
∣∣∣∣∣ s0 = si

 (C.25)

There are two forms of discretisation here. Firstly, time is discretised: it

increases by a fixed increment, +1, to transition the state from st → st+1.

Secondly, assuming this is a spatial exploration task, space is discretised: the

agent can be in exactly one state on any given time.

Both these constraints are loosened, reinstating time and space as

continuous quantities. Since, for space, I cannot hope to enumerate an infinite

number of locations, I represent the state by a population vector of diffuse,

overlapping spatially localised place cells. Thus it is no longer meaningful to
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ask what the expected future occupancy of a single location will be. The closest

analogue, since the place cells are spatially localised, is to ask how much I

expect place cell, i, centred at xi, to fire in the near (discounted) future. This

continuous time constraint alters the sum over time into an integral over time.

Further, the role of γ which discounts state occupancy many time steps into

the future, is replaced by τ which discounts firing a long time into the future.

Thus the extension of the successor representation, M(si, sj), to continuous

time and space is given by the successor feature,

ψi(x) = E

 ∫ ∞

t

1
τ
e− t′−t

τ fi
(
x(t′)

)
dt′

∣∣∣∣ x(t) = x

. (C.26)

Why have I chosen to do this? Temporally it makes little sense to discretise

time in a continuous exploration task: γ, the reinforcement learning discount

factor, describes how many timesteps into the future the predictive encoding

accounts for and so undesirably ties the predictive encoding to the otherwise

arbitrary size of the simulation timestep, dt. In the continuous definition, τ

intuitively describes how long into the future the predictive encoding discounts

over and is independent of dt. This definition allows for online flexibility in the

size of dt, as shown in Equation (C.24). This relieves the agent of a burden

imposed by discretisation; namely that it must learn with a fixed time step, +1,

all the time. Now the agent potentially has the ability to choose the fidelity over

which to learn and this may come with significant benefits in terms of energy

efficiency, as described above. Further, using the discretised form implicitly ties

the definition of the successor representation (or any similarly defined value

function) to the time step used in their simulation.

When space is discretised, the successor representation is a matrix encoding

predictive relationships between these discrete locations. TD successor features,

defined above, are the natural extension of the successor representation in a

continuous space where location is encoded by a population of overlapping basis

features, rather than exclusive one-hot states. The TD successor matrix, Mij ,
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can most easily be viewed as set of driving weights: Mij is large if basis feature

fj(x) contributes strongly to successor feature ψi(x). They are closely related

(for example, in the effectively discrete case of non-overlapping basis features,

it can be shown that the TD successor matrix then corresponds directly to the

transpose of the successor representation, MT
ij = M(si, si), see below for proof)

but I believe the continuous case has more applications in terms of biological

plausibility; electrophysiological studies show hippocampus encodes position

using a population vector of overlapping place cells, rather than one-hot states.

Furthermore the continuous case maps neatly onto known neural circuitry, as

in my case with CA3 place cells as basis features, CA1 place cells as successor

features, and the successor matrix as the synaptic weights between them. In this

case, the choice not to discretise space and use a more biologically compatible

basis set of large overlapping place cells is necessary - were the basis features to

not overlap they would not be able to reliably form associations using STDP

since often only one cell would ever fire in a given theta cycle.

For completeness (though this is not something studied in this report) this

continuous successor feature form also allows for rapid estimation of the value

function in a neurally plausible way. Whereas for the discrete case value can

be calculated as:

V (si) =
∑
j

M(si, sj)R(sj) (C.27)

where R(sj) is the per-time-step reward to be found at state sj , for continuous

successor feature setting:

V(x) =
∑
j

ψj(x)Rj (C.28)

where Rj is a vector of weights satisfying ∑
j Rjfj(x) = R(x) where R(x)

is the reward-rate found at location x. Equation (C.28) can be confirmed

by substituting into it Equation (C.26). Rj (like R(sj)) must be learned

independent to, and as well as, the successor features, a process that is not the
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focus of this study although correlates have been observed in the hippocampus

Gauthier et al. (2018). V(x) is the temporally continuous value associated with

trajectories initialised at x:

V(x) = E

 ∫ ∞

t

1
τ
e− t′−t

τ R
(
x(t′)

)
dt′

∣∣∣∣ x(t) = x

. (C.29)

C.6.1 Equivalence of the TD successor matrix to the

successor representation
Here I show the equivalence between M(si, sj) and Mij . First I can rediscretise

time by setting dt′ to be constant and defining γ = 1− dt′

τ and xn = x(n · dt′).

The integral in Equation (C.26) becomes a sum,

ψi(x) = (1− γ)E
 ∞∑
t=0

γtfi
(
xt
) ∣∣∣∣ x0 = x

. (C.30)

Next I rediscretise space by supposing that CA3 place cells in my model have

strictly non-overlapping receptive fields which tile the environment. For each

place cell, i, there is continuous area, Ai, such that for any location within

this area place cell i fires at a constant rate whilst all others are silent. When

x ∈ Ai we denote this state s(x) = si (since all locations in this area have

identical population vectors).

fi(x) = δ(x ∈ Ai) = δ
(
s(x) = si

)
(C.31)

Let the initial state be s(x) = sj (i.e. x ∈ Aj). Putting this into Equation (C.30)

and equating to Equation (3.3), the definition of our TD successor matrix, gives

ψi(x) =
∑
k

Mikδ(sj = sk) = (1− γ)E
 ∞∑
t=0

γtδ(st = si)
∣∣∣∣ s0 = sj

, (C.32)
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confirming that

MT
ij ∝M(si, sj). (C.33)

C.7 Relation to RatInABox
Note to reader: this work chronologically predates the work presented in

Chapter 1 and so does not officially use the RatInABox toolkit. However, the

motion and cell models developed in this work became an early prototype for

the toolkit and many of the simulation details are similar.

C.8 Simulation Details
Maze details In the 1D open loop maze (Figure 3.2a-e) the policy was to

always move around the maze in one direction (left to right, as shown) at a

constant velocity of 16 cm s−1 along the centre of the track. Although figures

display this maze as a long corridor it is topologically identical to a loop; place

cells close to the left or right sides have receptive fields extending into the right

or left of the corridor respectively. 50 Gaussian basis features of radius 1 m,

as described above, are placed with their centres uniformly spread along the

track. Agents explored for a total time of 30 minutes.

In the 1D corridor maze, Figure 3.2f-j, the situation is only changed in one

way: the left and right hand edges of the maze are closed by walls. When the

agent reaches the wall it turns around and starts walking the other way until it

collides with the other wall. Agents explored for a total time of 30 minutes.

In the 2D two room maze, 200 basis feature are positioned in a grid across

the two rooms (100 per room) then their location jittered slightly (Figure 3.2k).

The cells are geodesic Gaussians. This means that the ∥x(t)− xi∥2 term in

Equation (C.4) measures the distance from the agent location the centre of cell i

along the shortest walk that complies with the wall geometry. This explains the

bleeding of the basis feature through the door in Figure 3.3f. Agents explored

for a total time of 120 minutes.
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The movement policy of the agent is a random walk with momentum.

The agent moves forward with the speed at each discrete time step drawn

from a Rayleigh distribution centred at 16 cm s−1. At each time step the

agent rotates a small amount; the rotational speed is drawn from a normal

distribution centred at zero with standard deviation 3π rad s−1 (π rad s−1

for the 1D mazes). Whenever the agent gets close to a wall (within 10 cm)

the direction of motion is changed parallel to the wall, thus biasing towards

trajectories that “follow” the boundaries, as observed in real rats. This model

was designed to match closely the behaviour of freely exploring rats and was

adapted from the model initially presented in Raudies and Hasselmo, 2012

Raudies et al. (2012). I add one additional behavioural bias: in the 2D two

room maze, whenever the agent passes within 1 metre of the centre point of

the doorway connecting the two rooms its rotational velocity is biased to turn

it towards the door centre. This has the effect of encouraging room-to-room

transitions, as is observed in freely moving rats Carpenter et al. (2015).

Analyses of the STDP and TD successor matrices For the 1D mazes

there exists a translational symmetry relating the N = 50 uniformly distributed

basis features and their corresponding rows in the STDP/TD weight matrices.

This symmetry is exact for the 1D loop maze (all cells around a circle are

rotated versions of one another) and approximate for the corridor maze (broken

only for cells near to the left or right bounding wall). The result is that much

of the information in the linear track weight matrices Figure 3.2b,c,g,h can

be viewed more easily by collapsing this matrix over the rows centred on the

diagonal entry (plotted in Figure 3.2d and i). This is done using a circular

permutation of each matrix row by a count, ni, equal to how many times we

must shift cell i to the right in order for its centre to lie at the middle of the

track, xi = 2.5m,

Waligned
ij = Wi,(j+ni (mod 50)). (C.34)
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This is the ‘row aligned matrix’. Averaging over its rows removes little

information thanks to the symmetry of the circular track. I therefore define

the 1D quantity

⟨W⟩j :=
1
N

N∑
i=1

Waligned
ij . (C.35)

which is a convenient way to plot, in 1D, only the non-redundant information

in the weight matrices.

C.9 A Theoretical Connection Between STDP

and TD Learning
Why does STDP between phase precessing place cells approximate TD learning?

This section attempts to shed some light on this question by analytically

studying the equations of TD learning. Ultimately, comparisons between these

learning rules are difficult since the former is inherently a discrete learning rule

acting on pairs of spikes whereas the latter is a continuous learning rule acting

on firing rates. Nonetheless, in the end the following conclusions are drawn:

1. In the first part it will be shown that, under a small set of biologically

feasible assumptions, temporal difference learning “looks like” a spike-

time dependent temporally-asymmetric Hebbian learning rule (that is,

roughly, STDP) where the temporal discount time horizon, τ is equal to

the synaptic plasticity timescale O(20 ms).

2. In the second part it will be seen that this limitation that the temporal

discount time horizon is restricted to the timescale of synaptic plasticity

(i.e. very short) can be overcome by compressing the inputs. Phase

precession, or more formally, theta sweeps, perform exactly the required

compression.

In sum, there is a deep connection between TD learning and STDP

and the role of phase precession is to compress the inputs such that a very
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short predictive time horizon amounts to a long predictive time horizon in

decompressed time coordinates. This section will finish by discussing where

these learning rules diverge and the consequences of their differences on the

learned representations. The goal here is not to derive a mathematically

rigorous link between STDP and TD learning but to show that a connection

exists between them and to point the reader to further resources if they wish

to learn more.

C.9.1 Reformulating TD learning to look like STDP
First, recall that the temporal difference (TD) rule for learning the successor

features ψi(x) defined in Equation (C.16) takes the form:

dMij

dt
= ηδi(t)ej(t) (C.36)

where Mij are the weights of the linear function approximator, Equation (3.3)1

and δi(t) is the continuous temporal difference error defined in Equation (C.21).

ej(t) is the eligibility trace for feature j defined according to

ej(t) =
∫ t

−∞

1
τe
e

t−t′
τe fj(x(t′))dt′ (C.37)

or, equivalently, by its dynamics (which I will make use of)

ej(t) = fj(t)− τeėj(t). (C.38)

where τe ∈ [0, τ ] is a ‘free’ parameter, the eligibility trace timescale, analogous

to λ in discrete TD(λ). When τe = 0, the learning rule used to learn successor

features, “TD(0)”, is recovered, as in Equation (C.18).

Subbing Equation (C.21) and Equation (C.38) into this update rule,
1Note, firstly, it is a coincidence specific to this study that the basis features of the linear

function approximator, Equation (3.3), happen to be the same features of which we are
computing the successor features, Equation (C.16). In general this needn’t be the case.
Secondly, this analysis applies to any value function, not just successor features which are a
specific example. If fi(x) in Equation (C.16) was a reward density then ψi(x) would become
a true value function (discounted sum of future rewards) in the more conventional sense.
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Equation (C.36), rearranges to give

dMij

dt
= η

(
fiej − ψifj + τ ψ̇iej − τeψiėj

)
(C.39)

where η is redefined as η ← η′ = η/τ . Now let the predictive time horizon

be equal to the eligibility trace timescale. This setting is also called TD(1) or

Monte Carlo learning,

τ = τe (C.40)

Now

dMij

dt
= η

(
fiej − ψifj + τe

d

dt
(ψiej)

)
. (C.41)

The final term in this update rule, the total derivative, can be ignored with

respect to the stationary point of the learning process. To see why, consider

the simple case of a periodic environment which repeats over a time period T –

this is true for the 1D experiments studied here. Learning is at a stationary

point when the integrated changes in the weights vanish over one whole period:

0 =
∫ t+T

t
dt′Ṁij(t

′) = η
∫ t+T

t
dt′
(
fiej − ψifj

)
+ ητe

∫ t+T

t
dt′

d

dt′
(ψi(t

′)ej(t′))

(C.42)

= η
∫ t+T

t
dt′
(
fiej − ψifj

)
+ ητe

[
ψi(t+ T )ej(t+ T )− ψi(t)ej(t)

]
(C.43)

= η
∫ t+T

t
dt′
(
fiej − ψifj

)
(C.44)

where the last term vanishes due to the periodicity. This shows that the learning

rule converges to the same fixed point (i.e. the successor feature) irrespective

of whether this term is present and it can therefore be removed. The dynamics

of this updated learning rule won’t strictly follow the same trajectory as TD

learning but they will converge to the same point. Although strictly I only

showed this to be true in the artificially simple setting of a periodic environment
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it is more generally true in a stochastic environment where the feature inputs

depend on a stationary latent Markov chain Brea et al. (2016).

Thus a valid learning rule which converges onto the successor feature can

be written as
dMij

dt
= η

(
fi(t)ej(t)− ψi(t)fj(t)

)
(C.45)

Claim: this looks like a continuous analog of STDP acting on the weights

between a set of input features, indexed j, and a set of downstream “successor

features” indexed i. Each term in the above learning rule can be non-rigorously

identified as follows, a key change is that the successor features neurons have

two-compartments; a somatic compartment and a dendritic compartment:

• fi(t) := Vsoma
i (t) is the somatic membrane voltage which is primarily set

by a “target signal”. In general this target signal could be any reward

density function, here it is the firing rate of the ith input feature.

• ψi(t) := Vdend
i (t) is the voltage inside a dendritic compartment which

is a weighted linear sum of the input currents, Equation (3.3). This

compartment is responsible for learning the successor feature by adjusting

its input weights, Mij , according to equation (Equation (C.45)).

• fj(t) := Ij(t) are the synaptic currents into the dendritic compartment

from the upstream features.

• ej(t) := Ĩj(t) are the low-pass filtered eligibility traces of the synaptic

input currents.

dMij

dt
= η

(
Vsoma
i (t)Ĩj(t)︸ ︷︷ ︸

pre-before-post potentiation

− Vdend
i (t)Ij(t)︸ ︷︷ ︸

post-before-pre depression

)
(C.46)

This learning rule, mapped onto the synaptic inputs and voltages of a two-

compartment neuron, is Hebbian. The first term potentiates the synapse Mij

if there is a correlation between the low-pass filtered presynaptic current and

the somatic voltage (which drives postsynaptic activity). More specifically this

potentiation is is temporally asymmetric due to the second term which sets a
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threshold. A postsynaptic spike (e.g. when Vsoma
i (t) reaches threshold) will

cause potentiation if

Vsoma
i (t)Ĩj(t) > Vdend

i (t)Ij(t) (C.47)

but since the eligibility trace decays uniformly after a presynaptic input this

will only be true if the postsynaptic spike arrives very soon after. This is

pre-before-post potentiation. Conversely an unpaired presynaptic input (e.g.

when Ij(t) spikes) will likely cause depression since this bolsters the second

depressive term of the learning rule but not the first (note this is true if

its synaptic weight is positive such that Vdend(t) will be high too). This is

analogous to post-before-pre depression. Whilst not identical, it is clear this

rule bears the key hallmarks of the STDP learning rule used in this study,

specifically: pre-before-post synaptic activity potentiates a synapse if post

synaptic activity arrive within a short time of the presynaptic activity and,

secondly, post-before-pre synaptic activity will typically result in depression of

the synapse.

Intuitively it now makes sense why asymmetric STDP learns successor

features. If a postsynaptic spike from the ith neuron arrives just after a

presynaptic spike from the jth feature it means, in all probability, that the

presynaptic input features is “predictive” of whatever caused the postsynaptic

spike which in this case is the ith feature. Thus if we want to learn a function

which is predictive of the ith features future activity (its successor feature)

we should increase the synaptic weight Mij . Finally, identifying that this

learning rule looks similar to STDP fixes the timescale of the eligibility trace

to be the timescale of STDP plasticity i.e. O(20− 50 ms). And to derive this

learning rule we required that the temporal discount time horizon must equal

the eligibility trace timescale, altogether:

τ = τe = τSTDP ≈ 20− 50 ms (C.48)



C.9. A Theoretical Link Between STDP and TD 251

This limits the predictive time horizon of the learnt successor feature to a rather

useless – but importantly non-zero – 20-50 ms. In the next section I will show

how phase precession presents a novel solution to this problem.

C.9.2 Theta phase precession compresses the temporal

structure of input features
It was shown in Figure 3.1 how phase precession leads to theta sweeps. These

phenomena are two sides of the same coin. This section will start by positing

the existence of theta sweeps and showing that this leads to a potentially large

amount of compression of the feature basis set in time.

First, consider two different definitions of position. xT (t) is the “True”

position of the agent representing where it is in the environment at time t.

xE(t) is the “Encoded” position of the agent which determines the firing rate of

place cells which have spatial receptive fields fi(xE(t)). During a theta sweep

the encoded position xE(t) moves with respect to the true position xT (t) at a

relative speed of vS(t) where the subscript S distinguishes the “Sweep” speed

from the absolute speed of the agent ẋT (t) = vA(t). In total, accounting for

the motion of the agent:

ẋE(t) = vA(t) + vS(t) (C.49)

Now consider how the population activity vector changes in time

d

dt
fTi (xE(t)) = ∇xf

T
i (x) · ẋE(t) = ∇xf

T
i (x) · (vA(t) + vS(t)) (C.50)

and compare the time how it would varying in time if there was no theta sweep

(i.e xE(t) = xT (t))

dfTi (xT (t))
dt

= ∇xf
T
i (x) ·

dxT (t)
dt

= ∇xf
T
i (x) · vA(t). (C.51)

They are proportional. Specifically in 1D, where the sweep is observed to move

in the same direction as the agent (from behind it to in front of it) this amounts
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to compression of the temporal dynamics by a factor of

kθ =
vA + vS
vA

. (C.52)

This “compression” is also true in 2D where sweeps are also observed to move

largely in the same direction as the agent.

If this compression is large it would solve the timescale problem described

above. This is because learning a successor feature with a very small time

horizon, τ , where the input trajectory is heavily compressed in time by a factor

of κθ amounts to the same thing as learning a successor feature with a long

time horizon τ ′ = τκθ where the inputs are not compressed in time.

What is vS , and is it fast enough to provide enough compression to learn

temporally extended SRs? I can make a very rough ballpark estimate. Data is

hard to come by but studies suggest the intrinsic speed of theta sweeps can

be quite fast. Figures in Feng et al. (2015), Wang et al. (2020) and Bush et

al. (2022) show sweeps moving at up to, respectively, 9.4 ms−1, 8.5 ms−1 and

2.3 ms−1. A conservative range estimate of vS ≈ 5± 5 ms−1 accounts for very

fast and very slow sweeps. The timescale of STDP is debated but a reasonable

conservative estimate would be around τSTDP ≈ 35± 15× 10−3 s which would

cover the range of STDP timescales I use here. The typical speed of a rat,

though highly variable, is somewhere in the range vA ≈ 0.15± 0.15 ms−1.

Combining these (with correct error analysis, assuming Gaussian uncertainties)

gives an effective timescale increase of

τ ′ = τkθ = τSTDP
vA + vS
vA

≈ 1.1± 1.7s (C.53)

Therefore I conclude theta sweeps can provide enough compression to lift the

timescale of the SR being learn by STDP from short synaptic timescales to

relevant behavioural timescales on the order of seconds. Note this ballpark

estimate is not intended to be precise, and doesn’t account for many unknowns

for example the covariability of sweep speed with running speed, variability of
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sweep speed with track length or cell size which could potentially extend this

range further.

C.9.3 Differences between STDP and TD learning:

where my model doesn’t work
I only drew a hand-waving connection between the TD-derived Hebbian learning

rule in Equation (C.45) and STDP. There are numerous difference between

STDP and TD learning, these include the fact that

1. Depression in Equation (C.45) is dependent on the dendritic voltage

which is not true for my STDP rule.

2. Depression in Equation (C.45) is not explicitly dependent on the time

between post and presynaptic activity, unlike STDP.

3. Equation (C.45) is a continuous learning rule for continuous firing rates,

STDP is a discrete learning rule applicable only to spike trains.

Analytic comparison is difficult due to this final difference which is why

in this chapter I instead opted for empirical comparison. My goal was never

to derive a spike-time dependent synaptic learning rule which replicates TD

learning, other papers have done work in this direction (see Brea et al. (2016)

and Bono et al. (2021)), rather I wanted to (i) see whether unmodified learning

rules measured to be used by hippocampal neurons perform and (ii) study

whether phase precession aids learning. Under regimes tested here, STDP

seems to hold up well.

These differences aside, the learning rule does share other similarities to

my model set-up. A special feature of this learning rule is that it postulates

that somatic voltage driving postsynaptic activity during learning isn’t affected

by the neurons own dendritic voltage. Rather, dendritic voltages affect the

plasticity by setting the potentiation threshold. These learning rules have been

studies under the collective name of “voltage dependent” Hebbian learning

rules[CITE]. This matches the learning setting I use here where, during learning,
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CA1 neurons are driven by one and only one CA3 feature (the “target feature”)

whilst the weights being trained Wij don’t immediately effect somatic activity

during learning. The lack of online updating matches the electrophysiological

observation that plasticity between CA3 and CA1 is highest during the phase

of theta when CA1 is driven by Entorhinal cortex and lowest at the phase when

CA3 actually drives CA1 Hasselmo et al. (2002).

Finally, there is one clear failure for my STDP model – learning very long

timescale successor features. Unlike TD learning which can ‘bootstrap’ long

timescale associations through intermediate connections, this is not possible

with my STDP rule in its current form. Brea et al. (2016) Brea et al. (2016)

and Bono et al. (2021) Bono et al. (2021) show how Equation (C.45) can

be modified to allow long timescale SRs whilst still enforcing the timescale

constraint I imposed in Equation (C.40) thus still maintaining the biological

plausibility of the learning rule, this requires allowing the dendritic voltage

to modify the somatic voltage during learning in a manner highly similar

to bootstrapping in RL. Specifically in the former study this is done by a

direct extension to the two-compartment model, in the latter it is recast in a

one-compartment model although the underlying mathematics shares many

similarities. Ultimately both mechanisms could be at play; even in neurons

endowed with the ability to bootstrap long timescale association with short

timescale plasticity kernels phase precession would still increase learning speed

significantly by reducing the amount of bootstrapping required by a factor of

κθ, something I intend to study more in future work. Finally it isn’t clear

what timescales predictive encoding in the hippocampus reach, there is likely

to be an upper limit on the utility of such predictive representations beyond

which the animal use model-based methods to find optimal solution which

guide behaviour.
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C.10 Supplementary Analyses and Ablations

C.10.1 Cell Size and Agent Speed Effects
For convenience, panel a of Figure C.1 duplicates the experiment shown in

Figure 3.2a-e. The only change is learning time was extended from 30 minutes

to 1 hour.

Movement speed variability Panel b shows an experiment where I reran the

simulation shown in Figure 3.2a-e except, instead of a constant motion speed,

the agent moves with a variable speed drawn from a continuous stochastic

process (an Ornstein Uhlenbeck process). The parameters of the process were

selected so the mean velocity remained the same (16 cm s−1 left-to-right) but

now with significant variability (standard deviation of 16 cm s−1 thresholded

so the speed can’t go negative). Essentially, the velocity takes a constrained

random walk. This detail is important: the velocity is not drawn randomly on

each time step since these changes would rapidly average out with small dt,

rather the change in the velocity (the acceleration) is random - this drives slow

stochasticity in the velocity where there are extended periods of fast motion

and extended periods of slow motion. After learning there is no substantial

difference in the learned weight matrices. This is because both TD and STDP

learning rules are able to average-over the stochasticity in the velocity and

converge on representations representative of the mean statistics of the motion.

Smaller place cells and faster movement Nothing fundamental prevents

learning from working in the case of smaller place fields or faster movement

speeds. I explore this in Figure C.1, panel c, as follows: the agent speed is

doubled from 16 cm s−1 to 32 cm s−1 and the place field size is shrunk by a

factor of 5 from 2 m diameter to 40 cm diameter. To facilitate learning I also

increase the cell density along the track from 10 cells m−1 to 50 cells m−1. I

also shrink the track size from 5 m to 2 m (any additional track is redundant

due to the circular symmetry of the set-up and small size of the place cells). I

then train for 12 minutes. This time was chosen since 12 minutes moving at 32

cm s−1 on a 2 m track means the same number of laps as 60 mins moving at
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16 cm s−1 on a 5 m track (96 laps in total). Despite these changes the weight

matrix converged with high similarity to the successor matrix with a shorter

time horizon (0.5 s). Convergence time measured in minutes was faster than

in the original case but this is mostly due to the shortened track length and

increased speed. Measured in laps it now takes longer to converge due to the

decreased number of spikes (smaller place fields and faster movement through

the place fields). This can be seen in the shallower convergence curve, panel c

(right) relative to panel a.
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Figure C.1: STDP and phase precession combine to make a good approximation
of the SR independent of place cell size and running speed statistics. a Figure 3.2
panels a-e have been repeated (additional 30 minutes simulation carried out) for
ease of comparison. b I repeat the experiment with non-uniform running speed.
Here, running seed is sampled according to a continuous stochastic process (Ornstein
Uhlenbeck) with mean of 16 cm s−1 and standard deviation 16 cm s−1 thresholded
to prevent negative speeds. As can be seen in the trajectory figure speed varies
smoothly but significantly, including regions where the agent is almost stationary.
Despite this there is no observable difference to the synaptic weights after learning.
c I reduce the place cell diameter from 2 m to 0.4 m (5x decrease) and increase the
motion speed from 16 cm s−1 to 32 cm s−1 (2x increase). I increase the cell density
along the track from 10 cells m−1 to 50 cells m−1 to preserve cell overlap density.
To reduce the computational load of training I shrink the track length from 5 m
to 2 m (any additional track is symmetric and redundant when place cells are this
small anyway). Note the adjusted training time: 12 minutes on a 2 m track at 32 cm
s−1 corresponds to the same number of laps as 60 min on a 5 m track at 16 cm s−1

as shown for comparison in panel (a). Under these conditions the STDP + phase
precession learning rule well approximates the successor features with a shorter time
horizon of τ = 0.5.

C.10.2 Weight Initialisation and Update Schedule
Random initialisation: In Figure C.2, panel a, I explore what happens if

weights are initialised randomly. Rather than the identity, the weight matrix

during learning is fixed (“anchored”) to a sparse random matrix WA
ij ; this is

defined such that each CA1 neuron receives positive connections from 3, 4 or

5 randomly chosen CA3 neurons with weights summing to one. In all other

respects learning remains unchanged. CA1 neurons now have multi-modal

receptive fields since they receive connections from multiple, potentially far

apart, CA3 cells. This shouldn’t cause a problem since each sub-field now acts

as its own place field phase precessing according to whichever place cells in

CA3 is driving it. Indeed it doesn’t: after learning with this fixed but random

CA3-CA1 drive, the synaptic weights are updated on aggregate and compares

favourably to the successor matrix (panel a, middle and right). Specifically this

is the successor matrix which maps the unmixed uni-modal place cells in CA3

to the successor features of the new multi-modal “mixed” features found in

CA1 before learning. I note in passing that this is easy to calculate due to the

linearity of the successor feature (SF): a SF of a linear sum of features is equal

to a linear sum of SF, therefore I can calculate the new successor matrix using
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the same algorithm as discussed above then rotating it by the sparse random

matrix, M′
ij =

∑
k WA

ikMkj .

In order that some structure is visible matrix rows (which index the CA1

postsynaptic cells) have been ordered according to the location of the CA1

peak activity. This explains why the random sparse matrix (panel a, middle)

looks ordered even though it isn’t. After learning the STDP successor feature

looks close in form to the TD successor feature and both show a shift and skew

backwards along the track (panel a, rights, one example CA1 field shown).

Online weight updating: In Figure C.2, panels b, c and d, I explore what

happens if the weights are updated online during learning. It is not possible

to build a stable fully online model (as I suspect the review realised) and it

is easy to understand why: if the weight matrix doing the learning is also the

matrix doing the driving of the downstream features then there is nothing

to prevent instabilities where, for example, the downstream feature keeps

shifting backwards (no convergence) or the weight matrix for some/all features

disappears or blows up (incorrect convergence). However it is possible to get

most of the way there by splitting the driving weights into two components.

The first and most significant component is the STDP weight matrix being

learned online, this creates a “closed loop” where changes to the weights affects

the downstream features which in turn affect learning on the weights. The

second smaller component is what I call the “anchoring” weights, which I set

to a fraction of the identity matrix (here 1
2) and are not learned. In summary,

Equation (C.13) becomes

ψ̃i(x, t) =
∑
j

(
Wij(t) + WA

ij

)
fj(x, t) (C.54)

for WA
ij =

1
2δij .

These anchoring weights provide structure, analogous to a target signal or

“scaffold” onto which the successor features will learn without risk of infinite

backwards expansion or weight decay. After learning when analysing the
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weight/successor features the anchoring component is not considered.

Every other model of TD learning implicitly or explicitly has a form of

anchoring. For example in classical TD learning each successor feature receives

a fixed “reward” signal from the feature it is learning to predict (this is the

second term in Equation (C.23)). Even other “synaptically plausible” models

include a non-learnable constant drive (see Bono et al. (2021) CA3-CA1 model,

more specifically the bias term in their Eqn. (12)). This is the approach taken

here. I add the additional constraint that the sum of each row of the weight

matrix must be smaller than or equal to 1, enforced by renormalisation on each

time step. This constraint encodes the notion that there may be an energetic

cost to large synaptic weight matrices and prevents infinite growth of the weight

matrix.

Wij(t)←
Wij(t)

max(1,∑j Wij)
(C.55)

The resulting evolution of the learnable weight component, Wij(t), is shown

in panel b (middle shows row aligned averages of Wij(t) from t=0 minutes

to t = 64 minutes, on the full matrices are shown) and panel f (full matrix)

from being initialised to the identity. The weight matrix evolves to look like

a successor matrix (long skew left of diagonal, negative right of diagonal).

One risk, when weights are updated online, is that the asymmetric expansion

continues indefinitely. This doesn’t happen and the matrix stabilises after 15

minutes (panel e, color progression). It is important to note that the anchoring

component is smaller than the online weight component and I believe it could

be made very small in the limit of less noisy learning (e.g. more cells or higher

firing rates).

In panel c I explore the combination: random weight initialisation and

online weight updating. As can be seen, even with rather strong random initial

weights learning eventually “forgets” these and settles to the same successor

matrix form as when identity initialisation was used.

In panel d I show that anchoring is essential. Without it (WA
ij = 0) the

weight matrix initially shows some structure shifting and skewing to the left
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but this quickly disintegrates and no observable structure remains at the end

of learning.

Many-to-few spiking model In Figure C.2, panel e, I simulate the more

biologically realistic scenario where each CA1 neuron integrates spikes (rather

than rates) from a large (rather than equal) number of upstream CA3 neurons.

This is done with two changes:

Firstly I increased the number of CA3 neurons from 50 to 500 while

keeping the number of CA1 neurons fixed. Each CA1 neuron now receives

fixed anchoring drive from a Gaussian-weighted sum of the 10 (as opposed to

1) closest CA3 neurons.

Secondly, since in my standard model spikes are used for learning but

neurons communicate via their rates, I change this so that CA3 spikes directly

drive CA1 spikes in the form of a reduced spiking model. Let XCA1
i,t be the spike

count of the ith CA1 neuron at timestep t and XCA3
j,t the equivalent for the jth

CA3 neuron then, under the reduced spiking model,

Pr(XCA1
i,t = k) = Poisson(k,λi,t) (C.56)

λi,t =
1
dt

∑
j

WA
ijXCA3

j,t (C.57)

As can be expected, this model is very similar to the original model since CA3

spikes are noisy sample of their rates. This noise should average out over time

and the simulations indeed confirm this.
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Figure C.2: The STDP and phase precession model learns predictive maps
irrespective of the weight initialisation and the weight updating schedule. In the
original model weights are set to the identity before learning and kept (“anchored”)
there, only updated on aggregate after learning. In these panels I explore variations
to this set-up. a (Left) Weights are anchored to a sparse random matrix, not the
identity. (Middle) Three weight matrices show the random weights before/during
learning, the weights once they have been updated on aggregate after learning and
the successor matrix corresponding to the successor features of the mixed features.
Matrix rows are ordered by peak CA1 activity location in order that some structure
is visible. (Right) An example CA1 feature (top) before learning and (middle) after
learning alongside (bottom) the corresponding successor feature. b (Left) The weight
matrix is no longer fixed during learning, instead it is initialised to the identity and
updated online during learning. A fixed component (0.5 x δij) is added to “anchor”
the downstream representations. (Middle and right) After learning the STDP weights
show an asymmetric shift and skew against the direction of motion and a negative
band ahead of the diagonal just as was observed for successor matrices and the fixed
weight model. This backwards expansion does not carry on extending indefinitely (a
risk when the weights are updated online) but stabilises. c Like panel b but weights
are randomly initialised. After learning the weights have “forgotten” their initial
structure and are essentially identical to in the case of identity initialisation. d Like
panel b except no anchoring weights are added. Now there is no fixed component
anchoring CA1 representations, structure in the synaptic weights rapidly disintegrates.
e 500 CA3 neurons drive 50 CA neurons where each CA1 neuron is anchored to a
Gaussian-weighted sum of 10 closest CA3 cells. CA3 spikes now directly drive CA1
spikes according to a reduced spiking model. The inset shows the row-averages and
a comparison to the result for an equivalent simulation with the rate-model used in
the rest of this chapter.

C.10.3 Hyperparameter Sweep
I perform a hyperparameter sweep over STDP and phase precession parameters

to see which are optimal for learning successor matrices. Remarkably the

optimal parameters (those giving highest R2 between the weight matrix and

the successor matrix) are found to be those – or vary close to those – used by

biological neurons (Figure C.3). Specifically, to avoid excess computational costs

two independent sweeps were run: the first was run over the four relevant STDP

parameters (the two synaptic plasticity timescales, the ratio of potentiation

to depression and the firing rate) and the second was run over the phase

precession parameters (phase precession spread parameter and the phase

precession fraction).

On all cases the optimal parameter sits close to the biological parameter I

used in this chapter (panel c, d). One exception is the firing rate where higher
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firing rates always give better scores, likely due to the decreased effect of noise,

however it is reasonable biology can’t achieve arbitrarily high firing rates for

energetic reasons.
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Figure C.3: A hyperparameter sweep over STDP and phase precession parameters
shows that biological parameters are suffice, and are near-optimal for approximating
the successor features a A table showing all parameters used in this chapter and the
ranges over which the hyperparameter sweep was performed. For each parameter
setting I estimate performance metrics to judge whether the STDP parameters do well
at learning the successor features. b Visually inspecting the row aligned STDP weight
matrices I see the optimal parameters do not significantly outperform the biologically
chosen ones. Although the optimal parameter setting results in a slightly higher R2,
they fail to capture the right-of-centre negative weights present in the TD successor
matrix, unlike the biological ones. c Slices through the parameter sweep hypercube.
For each plot, parameter values of the other five variables are fixed to the green
values (i.e. are the ones used in this chapter). d The top 50 performing parameter
combination are stored and box plots for the conjugate parameter T = τpre

τpost , the
ratio of time windows for potentiation and depression, and −apost · T , effectively the
ratio of the areas under the curve left and right of the y-axis on the STDP plot
Figure 3.1c. In both cases the ‘best parameters’ include the true parameter values,
measured experimentally by Bi and Poo (1998) Bi et al. (1998)
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C.10.4 Phase Precession Hyperparameter Sweep
The optimality of biological phase precession parameters In Figure C.3

I ran a hyperparameter sweep over the two parameters associated with phase

precession: κ, the von Mises parameter describing how noisy phase precession is

and β, the fraction of the full 2π theta cycle phase precession crosses. The results

show that for both of these parameters there is a clear “goldilocks” zone around

the biologically fitted parameters I chose originally. When there is too much

(large κ, large β) or too little (small κ, small β) phase precession performance

is worse than at intermediate biological amounts of phase precession. Whilst –

according to the central hypothesis of the chapter – it makes sense that weak or

non-existence phase precession hinders learning, it is initially counter intuitive

that strong phase precession also hinders learning.

I speculate the reason is as follows, when β is too big phase precession

spans the full range from 0 to 2π, this means it is possible for a cell firing very

late in its receptive field to fire just before a cell a long distance behind it on

the track firing very early in the cycle because 2π comes just before 0 on the

unit circle. When κ is too big, phase precession is too clean and cells firing at

opposite ends of the theta cycle will never be able to bind since their spikes

will never fall within a 20 ms window of each other. I illustrate these ideas

in Figure C.4 by first describing the phase precession model (panel a) then

simulating spikes from 4 overlapping place cells (panel b) when phase precession

is weak (panel c), intermediate/biological (panel d) and strong (panel e). I

confirm these intuitions about why there exists a phase precession “goldilocks”

zone by showing the weight matrix compared to the successor matrix (right

hand side of panels c, d and e). Only in the intermediate case is there good

similarity.

Phase precession of CA1 In most results shown in this chapter the weights

are anchored to the identity during learning. This means each CA1 cells inherits

phase precession from the one and only one CA3 cell it is driven by. It is

important to establish whether CA1 still shows phase precession after learning
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when driven by multiple CA3 cells or, equivalently, during learning when the

weights aren’t anchored and it is therefore driven by multiple CA3 neurons.

Analysing the spiking data from CA1 cells after learning (phase precession

turned on) shows it does phase precession. This phase precession is noisier than

the phase precession of a cell in CA3 but only slightly and compares favourably

to real phase precession data for CA1 neurons (panel f, right, adapted from

Jeewajee et al. (2014) Jeewajee et al. (2014)).

The reason for this is that CA1 cells are still localised and therefore driven

mostly by cells in CA3 which are close and which peak in activity together at a

similar phase each theta cycle. As the agent moves through the CA1 cell it also

moves through all the CA3 cells and their peak firing phase precesses driving

an earlier peak in the CA1 firing. Phase precession is CA1 after learning is

noisier/broader than CA3 but far from non-existent and looks similar to real

phase precession data from cells in CA1.

Phase shift between CA3 and CA1 In Figure C.4g I simulate the effect

of a decreasing phase shift between CA3 and CA1. As observed by Mizuseki

et al. (2012) Mizuseki et al. (2012) there is a phase shift between CA3 and

CA1 neurons starting around 90 degrees at the end of each theta cycle (where

cells fire as their receptive field is first entered) and decreasing to 0 at the

start. I simulate this by adding a temporal delay to all downstream CA1 spikes

equivalent to the phase shifts of 0◦, 45◦ and 90◦. The average of the weight

matrices learned over all three examples still displays clear SR-like structure.
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Figure C.4: Biological phase precession parameters are optimal for learning the SR.
a I model phase precession as a von Mises centred at a preferred theta phase which
precesses in time. This factor modulates the spatial firing field. It is parameterised
by κ (von Mises width parameter, aka noise) and β (fraction of full 2π phase being
swept, diagonal line). I showed in a previous figure that biological phase precession
parameters are optimal. Any more or less phase precession degrades performance.
It is easy to understand why: b Consider four place cells on a track (purple, blue,
green, yellow) where the first and last just overlap. c In the weak phase precession
regime there is no ordering to the spikes and STDP can’t learn the asymmetry in
the successor matrix (right) d In the medium phase precession regime spikes are
broadly ordered in time (purple then blue then green...) so the symmetry is broken
and STDP learns a close approximation the successor matrix e) In the “exaggerated”
phase precession regime there exist two problems for learning SRs: “causal” bindings
(e.g. from presynaptic purple to postsynaptic yellow, which sits in front of purple)
are inhibited for anything except the most closely situated cell pairs due to the sharp
tuning curves. Secondly, though this is a less important effect, when β is too large it
is possible for incorrect “acausal” bindings to be formed due to one cell (e.g. yellow)
firing late in theta cycle N just before another cell located far behind it on the track
fires (e.g. purple) in theta cycle N+1. f CA1 cells will phase precess when driven
by multiple CA3 place cells. Here I show phase precession (spike probability for
different theta phases against distance travelled through field) for CA3 basis features
and CA1 STDP successor features after learning. Although noisier there is still
a clear tendency for CA1 cells to phase precess. Real CA1 cell phase precession
can be ‘noisy’; I show for comparison a phase precession plot for CA1 place field
taken from Jeewajee et al. (2014), the same data to which the parameters were
fitted. The schematic simulation figures showing spiking phase precession data in
panels b, c, d and e were made using an open source hippocampal data generation
toolkit George et al. (2024). Figure 2 –figure supplement 4 panel f, right has been
adapted from Figure 5a from Jeewajee et al. 2014. g (Left) A decreasing phase shift
is measured between CA3 and CA1, starting from 90◦ late in the cycle – the phase
cells initially spike at as animals enter a field – and ending at 0◦ early in the cycle,
panel is adapted from Mizuseki et al. 2012. (Middle) Three phase shifts (0◦, 45◦ and
90◦) are simulated and the average of the resulting synaptic weight matrices is taken
(right)
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Appendix to Chapter 4

D.1 Code Availability
Code to generate the results in Chapter 4 is available at https://github.com

/TomGeorge1234/HelmholtzHippocampus.

D.2 Detailed Model Implementation
A general description of the model is given here. Specifics for each experiment

(i.e. learning rates, layer sizes, time constants etc.) are given in later sections.

D.2.1 Dendritic Updates
Complete versions of the dendritic update rules (summarised in eqs. (4.2)

and (4.3)) are given below. It is assumed that dendrites receive and integrate

synaptic inputs according to the following dynamics:

τ dpB(t)
dt = −pB(t) + p̄(z(t))

τ dgB(t)
dt = −gB(t) + σgB (wgB p(t))

 Inference model (D.1)

τ dgA(t)
dt = −gA(t) + σgA(wgAg(t))

τ dpA(t)
dt = −pA(t) + σpA(wpAg(t))

 Generative model. (D.2)

These dynamics are discretised in order to be implemented computationally

by making the common assumption that neural dynamics are fast (τ ≈ 0 ms)

relative to the timescale of the synaptic inputs and so the compartments are

https://github.com/TomGeorge1234/HelmholtzHippocampus
https://github.com/TomGeorge1234/HelmholtzHippocampus
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always at equilibrium, recovering eqs. (4.2) and (4.3). This is valid in the regime

where the environmental latent updates slowly compared to neural timescales.

The notation used here admits the possible presence of biases as well as the

weights (though biases typically aren’t used) by assuming a row of constant 1’s

could be added to the synaptic inputs effectively absorbing a bias into the weight

matrix without loss of generality, for example wgB p(t)← wgB p(t) + bgB .

D.2.2 Somatic Updates
Somatic updates rules (eqs. (4.4) and (4.5)) are repeated here for completeness:

p(t) = θ(t)pB(t) + (1− θ(t))pA(t)

g(t) = θ(t)gB(t) + (1− θ(t))gA(t). (D.3)

where θ(t) is a 5 Hz global theta oscillation variable defined by the square wave

function:

θ(t) =


1, if t/T mod 1 ≤ 0.5

0, if t/T mod 1 > 0.5
(D.4)

D.2.3 Update Ordering
For this hierarchical network of multicompartmental neurons, the order in

which these discrete updates are performed to the different layers and the

different compartments within these layers must be specified. Strictly speaking,

when the discretisation timestep dt is small this ordering is arbitrary, but I

include it here for completeness.

I update the layers from bottom to top: first, I update the latent or

“environment” and increment the global clock (z(t+ dt)← z(t) & t+ dt← t).

Next I update both dendritic compartments of the sensory layer (pB(t+ dt)←

pB(t) & pA(t+ dt)← pA(t) noting that it makes no difference in which order

these updates are done as they are independent. Then I update the somatic

compartment of the sensory layer (p(t+ dt) ← p(t)). Next I work upwards

to the hidden layer (gB(t+ dt) ← gB(t) & gA(t+ dt) ← gA(t) followed by

g(t+ dt)← g(t)) then, if present, the topmost “conjunctive cells” are updated.
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This gives the following dendritic update rules which are only slightly – and in

the limit dt→ 0, irrelevantly – different from the simplified update rules given

in the main text:

pB(t+ dt) = p̄(z(t+ dt))

pA(t+ dt) = σpA(wpAg(t))

gB(t+ dt) = σgB (wgB p(t+ dt))

gA(t+ dt) = σgA(wgAg(t)) (D.5)

D.2.4 Learning Rules
Learning rules are conceptually summarised by the equations given in the

main text, eq. (4.6). The full equations are given here, which include some

adjustments to account for the presence of non-linear activation functions

and temporal smoothing of the local prediction error learning signals. In the

multilayer network, all sets of learnable weights follow an equivalent learning

rule. For this reason, it is given here in its most general form: Consider the

synaptic weight wij connecting from the soma of presynaptic neuron j with

activation fpre
j to one of the dendritic compartments of a postsynaptic neuron i

with activation fpost
C,i = σ(V post

C,i ) (this could be the basal or apical compartment,

C ∈ {A,B}). Weights are updated on each timestep by an amount:

δwij(t) = ηPIij(t) (D.6)

where PIij is (following terminology used in Urbanczik et al. (2014)) the

“plasticity induction” variable which is a low-pass filtered measure of the

coincidence between the local prediction error and the synaptic input. The

prediction error measures how far the activation of the dendritic compartment,

fpost
C,i , is from the somatic activation fpost

i . In total, PIij is defined by the
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following dynamics:

τPI
dPIij
dt

= −PIij + [fpost
i (t)− fpost

C,i (t)]︸ ︷︷ ︸
postsynaptic prediction error

· σ′(V post
C,i (t)) · fpre

j (t)︸ ︷︷ ︸
presynaptic input

(D.7)

If the prediction error and one of the presynaptic inputs are both consistently

large (i.e. over a time period O(τPI)) then the plasticity induction variable will

therefore also be large and the weight connecting the pre- and postsynaptic

neurons will be strengthened (thus decreasing future prediction errors). τPI

is taken to be the same as used in Urbanczik et al. (2014), 100 ms. Note for

fast filtering (τPI → 0 ms) and linear activation functions this reduces to the

simplified formulae given in the main text, eq. (4.6).

D.2.5 Synaptic Noise
I add synaptic noise to the dendritic activations. Each dendritic compartment

maintains its own independent noise variable, n(t), which is modelled as

an Ornstein-Uhlenbeck process. The benefit of modelling neural noise with

an Ornstein-Uhlenbeck process is that it is timestep size independent. The

dynamics of the noise variable are given by:

n(t+ dt) = n(t) +
dt

τ
n(t) +

√
2σ2dt

τ
ξ(t) (D.8)

where ξ(t) ∼ N (0, 1) is a white noise process. These dynamics lead to a

stationary distribution of n(t) which is Gaussian with zero mean and variance

σ2. The decorrelation timescale of the noise is τ . I fix τ = 300 ms and σ = 0.01

Hz in order that noise is relatively slow and weak. Noise is added at each

timestep to the activation of the dendrites, e.g. pB(t)→ pB(t) + nB(t) where

nB(t).

D.2.6 Measuring Prediction Error
Figure 4.2b and fig. 4.3d show the prediction errors of the network layers

decreasing throughout training. Here, the method for calculating these errors
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is defined. A consequence of the learning rule is that during wake, the apical

dendrites adjust to try minimise the discrepancy between the apical activation

and the soma (which, during wake, is equal to the basal activation). During the

sleep phase a short time later the basal dendrites adjust to try minimise the

discrepancy between the basal activation and the soma (which, during sleep, is

equal to apical activation). If learning is successful I would expect the apical

and basal activations to converge, thus I use the following measures of the

prediction error to track training performance in both layers of the network:

Ep(t) =
1
Np

∑
i

|[pB(t)]i − [pA(t)]i|

Eg(t) =
1
Ng

∑
i

|[gB(t)]i − [gA(t)]i|. (D.9)

These are then smoothed with a decaying exponential kernel of timescale 60

seconds to remove some of the noise and better display the learning signal.

D.3 Relationship to Online Bayesian Inference
Bredenberg et al. (2021) derived local synaptic learning rules for a similar

hierarchical network performing online latent inference starting from a loss

function closely related to the evidence lower bound (ELBO) of variational

inference. Here I will not repeat their derivation, instead I intend to highlight

their starting point, the most important assumptions they made and the

learning rules they derived, finally pointing out how theirs differ from the ones

used here. The point is to demonstrate that the learning rules proposed are

not arbitrary but can actually be derived from a more principled approach to

online inference.

Bredenberg et al. (2021) consider a network receiving input from a latent

variable z. The network has two layers, pt and gt.1 The network is trained to

perform online inference over a sequence of observations from the environment,
1For convenience, their variables have been translated into the notation of this work

(g↔ r,p↔ s,`↔ ˘, w↔ `) so it is easier to compare.
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z0:T . To do this they start from the loss function

L = Eθ,z
[
DKL(q̃w ∥ p̃w)

]
(D.10)

where q̃w and p̃w are the following probability distributions over the layer

variables pt and gt:

q̃w =
T∏
t=0

(q(gt|pt;winf)p(pt|zt))θtpm(gt, pt|pt−1, θt;wgen)
1−θt , (D.11)

p̃w =
T∏
t=0

(p(gt|pt;winf)p(pt|zt))︸ ︷︷ ︸
inference model

1−θtpm(gt, pt|pt−1, θt;wgen)︸ ︷︷ ︸
generative model

θt (D.12)

and θt ∈ {0, 1} is a binary variable (in their analysis they fix this to

oscillate in fixed symmetric phases, e.g. 000111000111...). The two probability

distributions, q̃w & p̃w, which this loss function attempts to make similar to

one another, can be interpreted as the probabilities over the layer variables

pt and gt in two noisy neural networks2 connected as I drew in Figure 4.1a:

the first network alternates between phases of inference, where information

flows bottom up from the latents z to the hidden layer g, and generation,

the opposite (inference-generation-inference-generation...), the second network

alternates in exact counterphase (generation-inference-generation-inference...).

This loss is a generalisation of the widely used evidence lower bound (ELBO)

which corresponds to the case where θt = 1 for all t. ELBO loss functions seek

to make the inference and generative distributions over sensory and hidden

variables similar. I will not delve further into the justifications for these types

of loss functions other than to state that they are widely used (Kingma et al.

2022).

One of the key conceptual steps taken by Bredenberg et al. (2021) (and

now myself) is to note that processes of performing inference and generation can
2Note there isn’t actually two networks being trained. Instead they use a mathematical

trick, deriving from the symmetry in the alternating phase of the theta cycle, to do away
with the need to sample from both networks meaning they can derive local learning rules
which can train a single network, e.g. q̃m, on its own. This single network, like mine, contains
both inference and generative models, represented by the two terms in eq. (D.11)
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locally occur simultaneously as long as they are received into distinct dendritic

compartments. The choice of which dendrite gates the soma (i.e. eq. (4.4))

then dictates the global state (wake or sleep) of the network. It also means, as

they show, that the loss can be approximately optimized using local learning

rules by comparing the dendritic compartment activation to that of the soma.

The learning rules they derive, again translated into my notation, are as follows

(note for simplicity I assume all activations are linear since non-linearities

add only one additional multiplicative term into their update equations, see

equations (14), (15) and (16) in (Bredenberg et al. 2021)):

dwgB

dt
∝ (1− θt)(gt − gB,t)pT

t

dwpA

dt
∝ θt(pt − pA,t)gT

t (D.13)
dwgA

dt
∝ θt(1− kt)(gt − gA,t−1)gT

t−1 (D.14)

where kt = (1− δ(θt − θt−1))θt is a term which is 1 if and only if θt = 1 and

θt−1 = 0 therefore it briefly turns off learning upon switching from sleep to

wake.

Readers may like to compare these learning rules to the ones used here, as

given in the main text eq. (4.6). The learning rules used here differ from theirs

in the following way:

• I relax their discrete time assumption, opting for a continuous time

formulation (pt → p(t) etc.).

• I note that the terms in the equations proportional to θt or 1− θt which

actively turn on or off learning depending on whether θt = 0 or 1 are

unnecessary since the prediction error term naturally falls to zero anyway.

For example, in eq. (D.13) when θt = 0 the network is in sleep and so

pt = pA,t. In this case the prediction error is zero by definition and

learning ceases even without the preceding θt term.

• I disregard the 1− kt term. Empirically this does not seem to damage the
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model and theoretically its impact should only be small in my continuous

time formulation where the network is only switching from sleep to wake

for a negligible proportion of the time.

• Upon provisional theoretical and experimental justification, θ is likened

to the theta component of the hippocampal local field potential and set

to 5 Hz.

Ultimately these changes are surface level. The learning rules used here can

– and should – be understood as a close approximation to those derived by

Bredenberg et al. (2021). Consequently it is appropriate to consider my

hippocampal model as learning to perform approximately optimal online

Bayesian inference.

D.4 Artificial Task: Implementation Details
Nz = 5 independent, autocorrelated, random latent variables are sampled from

a Gaussian process with a squared exponential covariance function of width 1

second, samples of these are shown in Figure 4.2a and Figure D.2. The sensory

layer is large (Np = 50) relative to the compressed hidden layer (Ng = Nz = 5)

and receives a random mixture of the latents into the basal compartments as

described in the text. All activation functions are linear, no layers have biases, all

learning rates are set to η = 0.01, and the discretisation timestep was dt = 25

ms. Weights are initialised randomly [wgB ]ij ∼ N (0, 1/
√
Np), [wpA ]ij ∼

N (0, 1/
√
Ng), [wgA ]ij ∼ N (0, 0.1/

√
Ng) where the smaller initialisation on

the recurrent weights, wgA , was chosen to prevent unstable dynamics.

Before learning – since weights are initialised randomly – basal and apical

voltages in the sensory layer are unmatched when tested for a period in wake

mode (Figure D.1a). When tested for a period in sleep mode, the small

initialisation of the recurrent weights means the hidden layer cannot sustain

activity (Figure D.1b, top) which decays and decorrelates rapidly in contrast

to the true latents (Figure D.1c). Compare this to after learning where, during

wake, basal and apical voltages in the sensory layer are closely matched implying
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accurate autoencoding through the compressed hidden layer. During sleep,

the hidden layer generates sustained activity statistically similar to the true

latents (they do not match because during sleep the true latents are not driving

the network; even during wake it would only be expected that the network

represent the true latents in its latent space up to a linear rotation), i.e. it is

functioning as a generative model. Note the only source of randomness driving

stochasticity and activity in the network is the noise in the dendritic updates

themselves.
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Figure D.1: Extended results from the artificial latent learning task. a Basal and
apical voltages in the sensory layer before learning during a one minute sample in
wake mode. b Samples of activity in the hidden layer and true latents before training
during a one minute sample in sleep mode. c Autocorrelations, averaged over the
units, for activity in panel b. d,e & f As in a, b & c but after training.

D.5 Path Integration Task: Implementation

Details
An agent randomly moves around a 1 m 1D circular track. The trajectory,

x(t), is sampled using the RatInABox (George et al. 2024) simulation package.

This means that velocity is modelled as an Ornstein-Uhlenbeck process (see

eq. (D.8)) with a decorrelation timescale of τ = 0.7 seconds and a standard

deviation of σ = 0.5 ms−1. There are Np = Ng = 100 neurons in both
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layers. The HPC dendritic activation function is linear (σpA(x) = x) whilst

both MEC dendritic compartments have rectified tanh activation functions

(σgB (x) = σgA(x) = max(0, tanh(x))). Note the choice of activation function

means MEC neurons have firing rate O(1 Hz). All learning rates are set to

η = 0.01, the discretisation timestep was dt = 25 ms and only pA & gB have

learnable biases.

I model Ni = Np = 100 inputs which are tuned to the position of the

agent according to the following Gaussian tuning curves (these roughly model

place cells):

[Œ(t)]i = exp
[
− (x(t)− xi)

2σ2

]
. (D.15)

where xi are centres of the Gaussians evenly spaced along the track. These

then linearly drive the basal dendritic compartments of the sensory neurons:

pB(t) = Bϕ(x(t)) (D.16)

where, in the results shown in the main text, Bij = δij is the identity matrix

such that each sensory neuron inherits a unimodal-tuning curve from one and

only one of the inputs, i.e. what was stated in eq. (4.8). I show in Figure D.2

that this choice is not particularly critical and the network can learn to perform

path integration with random sensory drive ([B]ij ∼ N (0, 1/
√
Np)).

Velocity inputs are connected as follows: two neurons encode the rectified

leftward and rightward velocity of the agent, normalised by the standard

deviation σ. Note, this means they have firing rates O(1 Hz).

vL(t) = max(0,−ẋ(t)/σ)

vR(t) = max(0, ẋ(t)/σ) (D.17)

Two sets of conjunctive cells (Ng = 100 in each set) sum inputs from the left
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and right velocity neurons and the hidden units as follows:

[gvL(t)]i = σgv
(
vL(t)− vR(t) +

∑
j

[wgvL ]ij [g(t)]j
)

[gvR(t)]i = σgv
(
vR(t)− vL(t) +

∑
j

[wgvR ]ij [g(t)]j
)

(D.18)

where σgv(x) = max(0,x− 1) is a ReLU function thresholded at x = 1. In the

main text I set [wgvL ]ij = [wgvR ]ij = δij so each conjunctive cell is connected

to one and only one hidden unit (something I relax in Figure D.2c). The

consequence of this connectivity is that a gvL neuron is above threshold (and

therefore active) if and only if the agent is moving to the leftand the hidden unit

it is connected to is active. Rightward motion silences gvL neurons. Similarly,

a gvR neurons is active if and only if the agent is moving to the right and the

hidden unit it is connected to is active. This conjunctive, logic-AND-gate-like

tuning to both MEC and velocity is why these neurons are called “conjunctive”

cells.

To order the MEC neurons after learning, and thus reveal the ring attractor,

I calculate their receptive fields as a function of agent position, g(x), as though

the network is in inference mode (so top-down recurrent connections and

drive from the conjunctive cells do not play a role). Then I permute the

ordering i′ ← i such that the maxima of the receptive fields move from left

to right along the track as the neuron count increases, arg maxx[g(x)]j′ >

arg maxx[g(x)]i′∀i′, j′ > i′. The effect of this ordering procedure is shown in

Figure D.2a (left hand side, top two panels).

Figure D.2a repeats the same path integration test as was shown in the

main text Figure 4.3 except now I additionally visualise the receptive fields of

HPC and MEC (after learning) and show timeseries of both HPC and MEC

neurons during the test. Once MEC neurons are reordered by their maxima

the ring attractor activity bump can be seen moving up at down the manifold

of neurons, even after the sensory lesion. Note again how some MEC neurons

have “died” and do not engage in the ring attractor dynamics, forcing the ring
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attractor manifold to live on the remaining subset of MEC neurons.

D.5.1 Position Decoding
To quantify the performance of path integration I train a decoder to estimate

agent position directly from the HPC population vector. The decoder is trained

on position and activity data from the final 10 minutes of training, after learning

had plateaued. The decoder I use is a Gaussian process regressor with a squared

exponential kernel, the length scale of which is optimised during fitting. The

decoder works well as can be seen in the path integration plots where, before

the sensory lesion, the decoded position correctly and accurately tracks the

true position.

D.5.2 Robustness to Weight Initialisations, Plasticity

Lesions and Noise
Since a central claim of this chapter is that the network can learn, from random

initialisations, the correct connectivity required to perform path integration, it

is important to question where and why weights in the model are not randomly

initialised and plastic.

Sensory weights The weights from the Gaussian tuned inputs to the HPC

sensory neurons, B in eq. (D.16), must be non-plastic to prevent the network

from rapidly converging on a trivial solution where all input weights fall to zero

killing all activity in the network and trivially minimising the local prediction

errors. They do not, however, need to be the identity function as I chose.

Figure D.2b repeats the standard path integration experiment but with a

network where [B]ij ∼ N (0, 1/
√
Np), path integration is still learned without

any problem. Ultimately this is not particularly surprising since the mapping

from the spatially-tuned sensory inputs, ϕ, to the ring attractor in the original

formulation was already mixed once by the randomly initialised weights from

HPC to MEC (wgB ). This just adds one additional layer of mixing.

MEC to conjunctive cells I show in Figure D.2c, that path integration is still

learned even when the MEC to conjunctive cell weights are initialised randomly,
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[wgvL ]ij ∼ N (0, 1/
√
Ng), [wgvR ]ij ∼ N (0, 1/

√
Ng). I leave it to future work

to investigate this result more thoroughly, and it is a notable relaxation on

assumptions made in previous models (Vafidis et al. 2022; Burak et al. 2009)

that fine-tuned connectivity from MEC to the conjunctive cells is assumed a

priori for path integration (connectivity which would presumably have to be

genetically encoded, which seems unlikely). I suspect part of the reason the

path integration is robust with respect to the setting of these weights is down

to the ability for MEC to construct its own inputs from HPC. This might mean

the exact form of the activity bump inside the ring attractor can be tailored to

fit the specific connectivity to the conjunctive cells – which is perhaps randomly

determined during development – in a particular network.

Plasticity lesions Path integration, as explored in section 4.3.2, requires fine

tuning the recurrent weights in the hidden layer (wgA) and consequently fails

when this plasticity is turned off (Figure D.3a). Intriguingly however, I find that

path integration does not strictly require plasticity between HPC and MEC

(as shown in Figure D.3b, echoing results in (Vafidis et al. 2022)). However,

when such plasticity is removed, the apical input to HPC coming from MEC is

unmatched to the sensory input HPC receives from the environment. As such,

any downstream system reading out position from the HPC code would only be

able to do so during sleep or wake and not both. This is somewhat restrictive

for a system hoping to use the hippocampal formation for online inference and

planning. Hence, a primary role of interlayer plasticity between HPC and MEC

in the model is to "translate" the environment-agnostic MEC code into the the

environment-specific HPC code. This idea is discussed further in section 4.3.3.

D.6 Remapping Task: Implementation Details
To investigate remapping, the network is first trained to path integrate as

described in the main text. The only difference is that I fix the weights from

HPC to MEC to the identity matrix ([wgB ]ij = δij and η = 0 on these weights)

during this phase of training, this results in MEC neurons with receptive fields
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Figure D.2: Path integration is performed by a ring attractor in MEC revealed
once the neurons are reordered by receptive field peak position. The network learns
to path integrate robustly, regardless of the choice of random initialisations. a The
same path integration test as in the main text is performed here: The top three rows
show receptive fields (left) and timeseries activity (right) for the MEC (top two) and
HPC layers (third) layers. MEC receptive fields and activity at first appears random.
It is only after reordering the neurons by the peak position of their receptive fields
that I see the ring attractor manifold. The bottom row shows the decoded position
(red) and the true position (purple), demonstrating accurate path integration. b
Like panel a except, instead of unimodal Gaussian inputs, the HPC neurons receive
a random-sum-of-Gaussian inputs. Nonetheless the network still learns to path
integrate (right). c Like panel a – with HPC neurons returned to their original
Gaussian receptive fields – except in this experiment the hidden units (MEC, g) are
connected to the conjunctive cells randomly, not one-to-one. The network still learns
to path integrate.
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Figure D.3: Network response to removal of plasticity and additional noise. The
standard path integration experiment is performed and hippocampal activity (as
well as true and decoded position) is shown in four modified conditions. a Plasticity
on the recurrent synapses (wgA) is turned off and the network no longer learns to
path integrate. b Plasticity on all weights between HPC and MEC (wgB & wpA) is
turned off. The network still learns to path integrate but inputs to HPC from MEC
are not matched to those from the sensory input. c Synaptic noise on all synapses is
increased by a factor of 10. The bump attractor is now noisier than Figure 4.3e but
path integration is still accurate. d Synaptic noise on all synapses is increased by a
factor of 100 at which point learning fails.

equal to those of the HPC neurons (except also passed through a rectified-tanh

activation function), Figure 4.4b left column.

In the second phase I begin by randomly permuting the centres of the

Gaussian sensory inputs in eq. (D.15). This “sensory shuffle” simulates the sort

of hippocampal remapping event which typically occurs when an agent enters

into a new environment. The activations of all neuronal layers are reset to zero.

A second phase of learning then begins, this time only the weights from HPC

to MEC (wgB ) and from MEC to HPC (wpA) are plastic (η = 0.01) while the

recurrent weights within MEC and the weights from the conjunctive cells to

MEC (collectively, wgA) are frozen (η = 0).

I found that MEC neurons regroup after the shuffle, reestablishing the

pairwise correlational structure they had before remapping with, perhaps, a

phase shift (Figure 4.4b). Once the ring attractor manifold has reappeared in
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this way the ability to path integrate returns (Figure 4.4c). I find these results

are clearest when wgB was fixed to the identity during the initial learning phase

as described above. Although I don’t investigate this finding thoroughly I

suspect it is because the network has an easier time learning the ring attractor

since the MEC inputs are already unimodal. With the identity mapping, a tidy

activity bump already on the MEC cells before the rest of the ring attractor

connectivity is learned, providing a good starting point. This matches the

standard set up for studies of path integration in, for example, Vafidis et al.

(2022)). This, perhaps, leads to a ring attractor which is more deeply embedded

into the MEC recurrent connectivity structure and which can therefore more

easily reestablish itself after a remapping. Nonetheless I discover that MEC is

able to relearn a significant portion of the bump attractor structure during the

second phase of learning even when this was not the case and wgB was randomly

initialised (wgB ∼ N (0, 1/Np)) and plastic during the initial learning, this

is shown in Figure D.4. Note how, in contrast to the receptive field shown

in Figure 4.4b, the MEC neurons are now multimodal and additional bands

of correlational structure (in addition to a global phase shift) appear after

relearning. I leave it to future work to investigate this further.
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Figure D.4: Regrouping of the MEC neurons after sensory remapping but relaxing
the constraint that HPC to MEC weights are fixed to the identity matrix during
initial learning. This results in MEC neurons with multimodal receptive fields and
more complex regrouping dynamics after remapping.
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Appendix to Chapter 5

E.1 Code Availability
Code and demos for the SIMPL method are available at https://github.com

/TomGeorge1234/simpl.

E.2 Theoretical Background: EM and State-

Space Models

E.2.1 Expectation Maximization
Expectation Maximization (EM, Dempster et al. (1977)) is a widely used

paradigm to perform statistical estimation in latent variable models. The goal

of EM is to maximise the Free Energy, a lower bound on the log-likelihood

log p(s; f) of the data, given by (following the notations of section 5.2.1):

F(f , q) := Eq(x)[log p(x, s ; f)]−Eq(x)[log q(x)] ≤ log p(s; f), (E.1)

where q is some probability distribution on the latent variable x. Importantly

F is maximised, and the lower bound becomes “tight”, at q⋆ := p(x|s ; f), i.e.

the posterior distribution of the latent variable given s and f . Moreover, for a

fixed q, the only f -dependent term in F is Eq(x)[log p(x, s ; f)]. To maximise

F(f , q) — and thus also increase the log-likelihood — EM produces a sequence

(f (e))e≥0 of parameters f (e) by invoking, at each step (or “epoch”) e, two well

https://github.com/TomGeorge1234/simpl
https://github.com/TomGeorge1234/simpl
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known subroutines:

• E-step: Define q(e) := p(x|s ; f (e−1)); compute F 7−→ Eq(e) [log p(x, s ; f)]

• M-step: Compute f (e) := arg max
f
F(f , q(e))

= arg max
f

Eq(e) [log p(x, s ; f)]

with the property that log p(s; f (e)) ≥ log p(s; f (e−1)) for all e, grounding the

use of EM to maximise the likelihood of the data. In this context it is important

to note that, due to a Gaussianity assumption, calculating the expectation

in the E-step requires estimating the mean (and variance) of the posterior

p(x|s ; f (e−1)) which can be treated as a point estimate of the latent trajectory,

i.e. a “decoding” of the latent from the spikes. Thus, in the context of neural

data, EM offers a framework to both estimate intensity functions via maximum

likelihood, and also to decode the variable encoded by the neurons.

Impossibility of Exact EM for Gaussian-Modulated Poisson

Processes The E-step of the EM algorithm requires computing a function

defined as an expectation with respect to p(x|s ; f (e−1)). In the case of Hidden

Markov Models, such expectations are intractable to compute in closed form,

unless the latent variable x is discrete (i.e. numerical estimation), or both

the transition and the emission probabilities are Gaussian (with mean and

variance depending linearly on x, (Rauch et al. 1965)). In this particular case,

exact inference in the model described in section 5.2.1 is impossible because

the emission probabilities are Poisson with mean given by a non-linear function

of x via each neurons tuning curve. In order to perform statistical inference

for this spike train model — and avoid resorting to numerical estimation

which is computationally expensive — SIMPL makes a set of approximations

that are detailed below. At a high level the goal is to convert the non-linear,

non-Gaussian spiking observations, into a variable that is linear and Gaussian

with respect to the latent, thus EM can be performed exactly using a Kalman

smoother.
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E.2.2 Linear Gaussian State Space Models and Kalman

Smoothing
Linear Gaussian State Space Models (LGSSM) are dynamical systems of the

form:
zt+1 = Ftzt + ϵt, ϵt ∼ N (0d,Qt)

xt = Htzt + δt, δt ∼ N (0m,Rt).
(E.2)

where z ∈ Rd, x ∈ Rm, Ft,Qt ∈ Rd×d, Ht ∈ Rp×d and Rt ∈ Rm×m. LGSSMs

can be used as latent variable models given some observed data x, where

z is treated as a latent variable. While these models are limited in their

expressiveness, their benefits are that inference (here, the “E-steps”) can be done

very efficiently: not only is the posterior p(z1, . . . , zT |x1, . . . , xT ) a Gaussian

distribution (of dimension Td), but all of its marginals and pairwise marginals

p(zt|x1, . . . , xT ), p(zt, zt+1|x1, . . . , xT ) (crucially, the only distributions needed

for learning the parameters of LGSSM via EM) can be computed jointly in

O(T ) time using an efficient technique known as Kalman Smoothing (Kalman

1960; Rauch et al. 1965).

Such a scaling contrasts with naive numerical binning-based alternatives

for inference in continuous, non-Gaussian State Space Models, which require

maintaining an estimate of each bin — a vector of size n (no. bins) where

n grows exponentially with the dimension of the latent space, as used in e.g.

Denovellis et al. (2021). Instead, for LGSSMs, the Gaussianity means only the

mean and covariance of the marginal posterior distributions — of size d and d2

respectively — need to be stored. This is not memory intensive and, perhaps

more importantly, the Kalman Filter proceeds to compute them in a combined

O(T ) time. In the experiments performed here, it was found that the cost of

the Kalman Filter was negligible relative to the kernel evaluations that are the

main computational bottleneck of SIMPL.

From here onwards, x will be used to denote the latent variable in the

LGSSM, and x̂ or s for observations.
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E.3 SIMPL as Approximate EM

E.3.1 MLE-Based Approximate E-Step
Instead of q(e) = p(x|s ; f (e−1)), SIMPL computes an approximation to q(e) ≈

q̂(e) = p(x|x̂ ; f (e−1)) where x̂ is the Maximum Likelihood Estimate (MLE) of

x given the observations s and the current tuning curves f (e−1) defined as:

x̂ = arg maxx log p(s|x ; f (e−1)) = arg maxx

T∑
t=1

N∑
i=1

log p(sti|xt ; f (e−1))

=⇒ x̂t = arg maxxt

N∑
i=1

log p(sti|xt ; f (e−1)).

(E.3)

As defined, computing the MLE returns a point estimate of the true trajectory

that led to the observed spike train s, however a posterior is sought. In

particular, MLE does not use the prior knowledge encoded by p(x).

To find the approximate posterior it is noted that, as a function of s,

x̂ is itself a random variable. In the many neurons limit, and under certain

regularity assumptions, the distribution of this random variable converges to

a Gaussian, a fact known as asymptotic normality. In other words; though

s (conditioned on x) is a non-Gaussian random variable, x̂ (a deterministic

function of s) is approximately Gaussian in the many neurons limit and thus

satisfied the conditions of the LGSSM.

I restate a formal statement of this asymptotic normality result in the

case of independent, but non-identically distributed observations1 originally

established in (Bradley et al. 1962), and reformulated using the notations of

the model at hand. For simplicity, the case where only P distinct intensity

functions f1, . . . , fP exist will be considered, although versions of this result

exist without this assumption.

Theorem E.3.1 (Asymptotic Normality of the MLE). Let x⋆t ∈ Rd. Let

s = (s1t, . . . , sNt) be independent random variables with probability densities

p(sti|x⋆t ; ft(i)), where t(i) ∈ {1, . . . ,P} is the index of the intensity function

1The i.i.d case was established in (Fisher 1925)
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ft(i) that generated the spike train sti. For p ∈ 1, . . . ,P , denote np the number

of times the intensity function fp appeared in the sequence ft(i). Assume that

the MLE x̂t exists and it is unique. Then, under mild regularity conditions, we

have:
√
N (x̂t − x⋆t )

d−−−−→
N→∞

N (0, I(x⋆t )−1)

where I(x⋆t ) :=
P∑
p=1

µpEp(st;fp)Hess(log p(st|x⋆t ; fp)) is the Fisher Information

matrix of the model at x⋆t ,
d−→ means convergence in distribution, and it is

defined that µp := limN→∞
np

N .

The asymptotic Gaussianity of the MLE in the many neurons limit suggests

performing approximate inference in a surrogate Hidden Markov Model, with

the same transition probabilities p(xt+1|xt) as the original ones, but where

the observations s are replaced by x̂. Leveraging Theorem E.3.1, SIMPL

approximates the emission probabilities p(x̂t|xt) by the Gaussian distribution

N (xt, Σt), where Σt := (NI(x̂t))−1 ≈ (NI(xt))−1, the Fisher information of

the spikes.

Temporarily ignoring the xt-dependence of the covariance matrices Σt and

treating them as deterministic (discussed below), the variables (xt, x̂t) then

form the following latent variable system with hidden variables xt and observed

variables x̂t given by:

xt+1 | xt ∼ N (xt, σ2
vI),

x̂t | xt ∼ N (xt, Σt)
(E.4)

This model is precisely an instance of Linear Gaussian State Space Models

defined in eq. (E.2) and the four matrices set to:

Ft = I (constant)

Ht = I (constant)

Qt = σ2
vI (constant)

R = Σt (time-varying).

(E.5)
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This correspondence allows SIMPL to compute an approximation of the

marginal posterior distributions p(xt|s) ≈ p(xt|x̂) using Kalman Smoothing

(Kalman 1960; Rauch et al. 1965). Importantly, the MLE estimates x̂t can be

obtained in parallel for all t; the only sequential procedure remaining being the

Kalman Smoothing step. The trajectory x̂(e) of SIMPL’s E-step is then set to

the mean of q̂(e).

E.3.2 Spike Smoothing: A Generalized M-Step
SIMPL’s M-step is computationally cheap and interpretable. However, it differs

from the M step of the EM algorithm, which is recalled to be given by:

f (e),EM := arg max
f
F(f , q(e)) = arg max

f
Eq(e) [log p(x, s ; f)] (E.6)

Below, I reconcile the two approaches by showing that SIMPL M-step can

be seen as instances of a more general “model fitting” M-step. To see why,

note the objective function of a standard M-step equals (up to a constant in

f) the negative KL divergence between the joint distribution2 q̂(e)(x|s)p(s)

(observable through samples) and the model p(s, x; f). Thus, a standard M-

step can be understood as minimizing this KL divergence approximately, by

replacing the expectation over p(s) by an empirical average over the true data

s, an approximation which is asymptotically consistent in the large number of

time steps limit under suitable ergodicity conditions (Billingsley 1961).

Similarly, SIMPL’s M-Step also fits the model p(s, x, f) to the “data”

distribution q̂(e)(x|s)p(s). However, instead of doing so by minimizing the KL

divergence between the data and the model, it does so using a kernel-based

estimate 3. Thus, Both M-steps can be understood as having the same goal,

simply differing in their solution to solve it. In that sense, SIMPL’s M-step is

indeed a generalized M-step.
2I denote qk(x) by qk(x|s) to highlight the dependence between x and s.
3Additionally, it replaces the expectation over q̂(e)(x|s) by a one-sample estimate of it

through x̃
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E.4 Efficient Implementation and Algorithmic

Details
Some implementation details that were important to maximise the computa-

tional efficiency of the method are provided below.

E.4.1 Maximizing Computational Efficiency

Computational Bottlenecks
A single evaluation of the log-likelihood log p(st|xt) requires evaluating the

kernel-based rate map estimates given in eq. (E.6). This takes O(T ) time

since it involves a sum across all timesteps. Moreover, this calculation will be

repeated itself T -times for each step of the Kalman smoother in order to (1)

compute the MLEs x̂t (that naively require gradient ascent on log p(st|xt)) and

(2) evaluate the MLE variance Σt := (NI(x̂t))−1 = (NHx(log p(s|x̂t))(x̂t))−1.

All in all, an exact implementation of SIMPL’s E-step would have quadratic

O(T 2) time complexity, which would be prohibitively slow for long datasets.

Moreover, the second-order differentiation needed to compute I(x̂t) is also

computationally expensive (formally, it introduces a large constant factor in

front of the O(T 2) term). In the next sections, additional approximations are

described that allow SIMPL to estimate the MLE and its variance in O(T )

time and without differentiating the rate maps.

Linear-Time MLE estimation
Naive gradient-based solution The naive way to calculate the MLE x̂t is

to evaluate all N tuning curves (recall each evaluation costs O(T )) for some

location x, use these to establish the log-likelihood log p(st|x), calculate the

gradient of this log-likelihood with respect to x, and then take, for example,

k gradient descent steps to find the MLE. This process is repeated for each

timestep t in the Kalman smoother, leading to a quadratic time complexity of

O(kNT 2).



292 Appendix E. Appendix to Chapter 5

SIMPL’s approach To compute the MLE in linear time SIMPL bypasses the

need to recalculate the tuning curves at each time step by, instead, binning

them onto a discretized grid of points once at the start of each iteration.

Formally SIMPL computes n evaluations the tuning curves f̃ := (f̃1, . . . , f̃n) :=

(f(g1), . . . , f(gn)) on a grid of n points G = (g1, . . . , gn). This has time

complexity O(NnT ). I use a uniform rectangular grid of points (the smallest

rectangle containing the full observed behavioural variable) with a spacing dx.

For example, in a 1 m × 1 m environment with dx = 0.02 m, this would yield

a grid of 50×50 points (n = 2500). Then, given f̃ , SIMPL then discretizes the

log-likelihood functions log p(st|x) over that same grid:

l̃it := log p(st|gi) =
N∑
j=1

log p(stj |gi) =
N∑
j=1

log
e−f̃ij f̃

stj

ij

stj !

= −
N∑
j=1

f̃ij + stj log f̃ij − log stj !
(E.7)

where it is noted that f̃ij := [f̃(gi)]j . Finally, given such evaluations, SIMPL

sets its approximation of the MLE to be

x̂t := arg max
g∈G

log p(st|g) = arg max
i

l̃it (E.8)

This way of calculating the MLE has linear time complexity yielding an

improvement for n < kT .

Linear-Time Derivative-Free MLE Variance Estimation
A similar strategy could be employed to also compute

I(x̂t) := −Hx(log p(st|x̂t))(x̂t), (E.9)

which appears in Σt. Here Hx is the Hessian operator defined as Hx(f)(x) :=

∇2
xf(x). To do so, one could compute the Hessian of the rate maps and

their logarithm on that grid, from which any Hx(log p(s|x̂t))(x̂t) at the grid-

point-based MLE obtained above can be evaluated as Hx(log p(st|gi))(gi) =
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−∑N
j=1 Hx(fj)(gi) + stjHx(log fj)(gi). This would be linear in time however,

it was found that differentiating f could be very slow.

Instead SIMPL takes an entirely different approach and produces an

estimation of Σt by instead estimating the variance of the posterior distribution

p(xt|st) ∝ p(xt)p(st|xt) = p(st, xt). The posterior variance and the MLE

variance are expected to closely match, as discussed in our theoretical

justification above. Moreover, as this posterior is available analytically up

to the normalizing constant p(st), its variance can be approximately computed

by binning p(xt|st) onto the same grid G introduced above, yielding the following

fast estimator for Σt.

Σt ≈ Cov p(xt|st) ≈
∑
i p̃it(gi −µt)(gi −µt)

T∑
i p̃it

, µt :=
∑
i gip̃it∑
i p̃it

(E.10)

where p̃it := exp(l̃it) = p(st|gi). Intuitively, this is equivalent to fitting a

multivariate Gaussian to the binned likelihood map. The covariance matrix

of this Gaussian is then used as an approximation of the MLE variance. A

theoretical argument justifying the validity of this formula is provided below.

Theoretical Justification Equation (E.10) is justified by the Bernstein

Von Mises theorem, which states that the difference between the posterior

distribution and the distribution of the MLE vanishes in the many neurons limit.

I restate this theorem using the notations of this chapter, assuming a unique

rate map, and without stating some of the required regularity assumptions for

simplicity. I refer the reader to (Vaart 2000, Theorem 10.1, p.141–144) for the

full version.

Theorem E.4.1 (Bernstein-von Mises). Let x⋆t ∈ Rd. Let st = (s1t, . . . , sNt)

be i.i.d random variables with probability density p(st|x⋆t ; f). Assume that the

MLE x̂t exists and it is unique. Then, under mild regularity conditions, for

any prior p on xt, we have:

∥p(xt|st)−N (x̂t, (NI(x⋆t ))−1)∥TV
p(st)→
N→∞

0
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where p(s)→ denotes convergence in probability, and ∥ · ∥TV denotes the Total

Variation norm on bounded measures.

From this theorem, I thus have that the (random) posterior distribution

behaves (in total variation) as a Gaussian whose covariance matrix is precisely

the asymptotic variance of the MLE. Note however that convergence in total

variation does not a priori imply convergence of variances. Further work could

examine under which assumptions such a convergence of variances may hold. In

practice, I found that this approximation yielded a satisfying trade-off between

performance and accuracy.

E.4.2 Iterative Linear Realignment of the Trajectories
To improve the identifiability properties and the numerical stability of SIMPL,

I also transform the decoded latent trajectory at each iteration using a linear

mapping which maximally aligns it with behaviour defined as x(e)
t ←Mx(e)

t + c

where M, c = arg min∑t ∥x
(0)
t − (Mx(e)

t + c)∥. This approach ensures the

scale, orientation and centre of the optimised latent trajectory are tied to

behaviour, preventing accumulation of linear shifts/rotations across iterations

and allowing the latent to be interpreted relative to, and in the same units

as, behaviour. I suspect that performing this alignment on all iterates after

the optimisation would yield similar results. Because the transformed latent

necessarily has similar scale to the behaviour — which was used to set the size

of the discretised environment — I can reuse the same discrete grid for the

latent avoiding the need to rediscretize the environment at each iteration.

E.4.3 Hyperparameters Settings
SIMPL has two model hyperparameters:

• v: the diffusion rate for Kalman smoothing, which sets a prior over

expected velocity of the latent variable. Units are in ms−1.

• σ: the bandwidth of the kernel used in the M-step to smooth spikes.

Units are in m.
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Additionally there are some implementation-specific parameters:

• dx: the bin size for the variance estimation of the MLE. Units are in m.

• dt: the time step of the discretization of the latent variable. Units are in

s.

• E: the number of iterations of the EM algorithm.

Finally, in all simulations I used a test fraction of 10% and held out ‘speckled’

data segments of length 1 second to evaluate the performance of the model.

The value of these hyperparameters for the Artificial Grid Cell Dataset and

the Real Hippocampal Dataset are provided in table E.1.

Table E.1: Hyperparameters settings for the SIMPL experiments

Dataset v σ dx dt E

Artificial Grid Cell Dataset
(fig. 5.2)

0.4 ms−1 0.02 m 0.02 m 0.1 s 10

Real Hippocampal Dataset
(fig. 5.3)

1.0 ms−1 0.1 m 0.04 m 0.2 s 10

Motor task dataset (2D)a

(fig. 5.4c,d)
1.0 0.1 0.02 0.05 s 10

Motor task dataset (4D)
(fig. 5.4e)

1.5 0.09 0.1 0.05 s 10

a All behavioural variables (hand position and velocity) are normalised to lie
between 0 and 1, so units here are arbitrary.

E.4.4 Synthetic Data Generation with the RatInABox

Package
All synthetic grid cell data were generated using the RatInABox package

(George et al. 2024). In this model, an agent moves through a 1 m by 1 m

environment following a smooth, continuous random motion policy (details can

be found in the original paper)under default parameters whereby the agent’s
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mean speed is 0.08 m/s. Specifically, the RatInABox model was used to generate

the true latent trajectory, denoted as x⋆. This trajectory was then “noised” to

produce the trajectory used as the initial condition for SIMPL, denoted as x(0),

which represents the animal’s measured position. The noise, or “discrepancy”

vector ∆x := x(0)− x⋆, was generated by sampling a velocity trajectory from a

2D Ornstein-Uhlenbeck process with zero mean and a coherence time scale of 3

seconds. This velocity trajectory was then integrated to obtain the discrepancy.

Finally, the agent’s behaviour x(0) was additionally influenced by the same

environmental forces implemented in the standard RatInABox model, i.e. the

agent smoothly drifts away from walls to avoid crashing. The scale of the

Ornstein-Uhlenbeck process was adjusted so that the mean discrepancy between

the latent and observed trajectories was 20 cm in pen-space (i.e. away from

walls).

Grid cells were modelled as the thresholded sum of three cosine plane

waves (see Appendix A.2.3) with a width ratio—ratio of field width to inter-field

distance—of 0.55. Each grid cell is assigned a wave direction θi, gridscale λi
and 2D phase offset ϕi = [ϕ1,ϕ2]T. Specifically, N=225 grid cells were divided

into 3 modules of N=75 grid cells. Within each module all cells had the same

grid scale (0.3, 0.5 and 0.8 m) and wave direction (0, 0.1 and 0.2 rad) but

random phase offsets, approximately matching grid cells in the brain. Grid cell

firing rates are all scaled to a maximum of 10 Hz.

Grid cells firing rates are determined by the latent position at time t, i.e.

fi(t) = fGC(x⋆t ), from which spikes are sampled according to an inhomogeneous

Poisson process Nspikes(t, t+ dt) ∼ Poi(fi(t) · dt).

E.4.5 Test-Train Partitioning
To assess performance I partition the spike data matrix, s, into testing and

training sets, Stest,Strain. Inference is performed solely on the training set

and I then track the log-likelihood of data in both sets (fig. 5.2d, left),

e.g. ℓ(e) = |Stest|−1
test

∑
(i,t)∼Stest log p(sti|x(e)

t , f (e)i ). This partitioning requires

careful consideration: entire time intervals cannot be withheld for testing
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without impairing the model’s ability to infer the latent over this period.

Likewise, entire neurons cannot be withheld without impairing the model’s

capacity to estimate their tuning curves. Instead, I adopt a speckled train-

test mask previously used in latent variable modelling set-ups (Williams et al.

2020) which withholds for testing extended chunks of time bins arranged in an

irregular “speckled” pattern across the data matrix (totalling 10% of the data).

E.4.6 Benchmarking Details
In section 5.3.5, I benchmarked SIMPL against four comparable methods on the

synthetic grid cell datasets. For all techniques, tuning curves were visualised

in the same way as for SIMPL: by extracting the latent trajectories after

optimisation and using kernel smoothing to construct the rate maps, i.e., a single

“M-step.” Default parameters were used for all methods. CEBRA constrains

its N-dimensional latent space to lie on an (N-1)-dimensional hypersphere. I

disabled this constraint for the 2D grid cell dataset. For GPLVM, I used a

variant that exploits induction points to improve scalability with the amount

of data, performed a grid-search across the number induction points, and

reported the best result. For GPDM, which does not feature induction points

and thus has a cubic complexity with respect to T , training was restricted

for this technique to 5 minutes of data (compared to 60 minutes for the other

methods) to keep computation times under 1 hour,. For pi-VAE, I set the “task

variable” ut to the behaviour x(0)t , and the latent zt to be the true position xt.

Additionally, I set the distribution p(zt|ut) (e.g. the position given behavior

mapping) to be a Gaussian distribution centered at ut = x
(0)
t , and a fixed

variance.
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E.5 Supplementary Analyses and Robustness

Tests

E.5.1 Discrete Latent Toy Model
Before testing SIMPL on a large temporally continuous dataset, a smaller

dataset was constructed akin to a discrete two-alternative forced choice task

(2AFC) (Figure E.1) — a widely studied decision–making paradigm (Platt

et al. 1999; Bogacz et al. 2006; Znamenskiy et al. 2013; Lieder et al. 2019).

The true latent states x⋆t ∈ {0, 1} are binary and have no temporal structure

(here subscript t indexes trials not time), analogous to a series of random “left”

or “right” choices (fig. E.1b). This latent state is stochastically encoded by a

population of neurons with random tuning curves giving the Bernoulli emission

probabilities under each latent state:

f⋆i (x) =


fi0 ∼ U(0, 1) x = 0,

fi1 ∼ U(0, 1) x = 1,
(E.11)

x⋆t ∼ Bernoulli(0.5) and sti|xt ∼ Bernoulli(f⋆i (x⋆t )). (E.12)

Data is then sampled for T = 50 trials and N = 15 neurons as shown in

fig. E.1. Initial conditions, x(0)
t , are generated from the true latent by randomly

resampling a fraction of trials ρ = 0.5 (fig. E.1b). This partial resample

represents an initial discrepancy between the behavioural measurement and

the true internal state of the agent.

I perform inference on this dataset using a reduced version of the model

(Simpl-r). In the M-step, tuning curves were fitted by calculating the

average activity of a neuron across each latent condition (e.g. f
(e)
i (x) =∑

t stiδ(x
(e)
t , x)/∑t δ(x

(e)
t , x), conceptually similar to kernel smoothing). For

the E-step, each latent was the decoded according to the maximum likelihood

estimate under the observed spikes and tuning curve estimates from the previous

epoch: x(e+1)
t = arg maxx

∑
i log p(sti|x, f (e)i ) (there is no time dependence
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between latents, thus no Kalman smoothing). This process was repeated

for 5 epochs and, with high reliability, converged on the true latents after

approximately two (fig. E.1c,d, distributions show repeat for 1000 randomly

seeded datasets, dotted lines show ceiling performance on a model perfectly

initialised with noiseless x(0) = x⋆). I repeated this experiment for various

values of ρ: latent recovery was almost perfect when ρ was small (i.e. when the

initial conditions were close to the true latent), dropping off as ρ approached

1. At ρ = 1 when the conditions were completely random, the model was

biased to recover a latent space that is either perfectly correlated or perfectly

anti-correlated (“left” ↔ “right”) with the true latent (fig. E.1c, right), an

isomorphic solution.
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Figure E.1: A two-alternative forced choice task (2AFC) toy-model. (a) Data
generation: Spikes are sampled from a simple generative model. For each of T=50
independent trials a random binary latent — analogous to a “left” or “right” choice —
is encoded by a population of N=15 neurons with randomly initialised tuning curves.
(b) Model performance: Starting from a noisy estimate (yellow) of the true latent
(black) where a fraction ρ = 0.5 of trials are resampled, Simpl-r recovers the true
latent variables (green) with high accuracy. (c) Left: Correlation between x(e) and
x⋆. Middle: Log-likelihood, log p(s|x(e), f (e)). Right: Final correlation between x(5)

and x⋆ as a function of initialization noise ρ. Violin plots show distributions over
1000 randomly seeded datasets, dotted lines show ceiling performance of a perfectly
initialised model (x(0) = x⋆) (d) Tuning curves.

E.5.2 Hyperparameter Sweep
I swept over the two hyperparameters v (the velocity prior) and σ (the kernel

bandwidth) to assess how sensitive SIMPL is to these hyperparameters, as

shown in Figure E.2. For this, the same synthetic grid cell dataset used in
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fig. 5.2 was used. Notably, SIMPL’s performance (measured in terms of the final

error, see panel b) is relatively stable across a wide range of hyperparameters;

kernel bandwidths between 0.1 cm and 5 cm and velocity priors between 0.2 m/s

and 1 m/s all yield similar performance. Inspecting the tuning curves confirmed

that kernel bandwidth has a significant effect on their appearance. Broader

kernels give smoother tuning curves, eventually blurring the individual grid

fields together, while narrower kernels give sharper tuning curves, eventually

leading to overfitting where individual spikes are resolved.
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Figure E.2: Performance of SIMPL on the synthetic grid cell dataset as a function
of the hyperparameters v (speed prior) and σ (kernel bandwidth). (a) Tuning curves.
(b) Final error between the latent and ground truth (colour) and total compute time
(size).

E.5.3 Non-Continuous Replay Dataset
Since SIMPL places an explicit prior on latent trajectories that are smooth

and continuous I tested whether it could be used to model a dataset where

the latent variable is non-continuous. For this I simulated a synthetic “replay”

dataset from N = 225 small Gaussian place cells. In this dataset the latent

variable and behaviour perfectly match except for regular, brief periods of

“replay” where the latent variable jumps to a new location. Using the same

hyperparameters as in the main text I found that SIMPL was able to recover the

latent variable, capturing (or “decoding”) the replay events with high accuracy
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(fig. E.3), despite its smoothness prior.
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Figure E.3: A synthetic hippocampal “replay” dataset. (a) One minute of trajectory,
x-coordinate in solid line, y-coordinate in dashed. The behaviour (light-green, top
panel) is smooth, actually matching the latent most of the time except when the
latent takes regular, brief discontinuous jumps reminiscent of hippocampal replay
events. After optimisation SIMPL is able to recover the latent (dark-green, bottom
panel) and capture the replay events with high accuracy. (b) Spike raster plots;
spikes plotted against the behaviour, optimised latent and ground truth latent.

E.5.4 Automatic Place Field Detection
In Figure 5.3, it was shown that the tuning curves of place cells in the

hippocampus undergo statistically significant changes when optimised using

SIMPL. For this analysis, individual place fields were automatically identified

from the binned rate maps as isolated regions of elevated activity within a cell’s

tuning curve. This was done by thresholding the activity of each neuron at 1

Hz and identifying contiguous regions of activity with a peak firing rate above

2 Hz and a total area less than half that of the full environment, similar to

approaches taken in previous work (Tanni et al. 2022).

E.6 Summary Table of Related Methods
Some of the most relevant LVM and dimensionality reduction techniques are

summarized here in the context of our five key desiderata as described in the

related work section. These are:

1. Complex tuning curves: Does the model learn/infer non-linear tuning

curves as opposed to linear/exponential-linear/etc. tuning curves.
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2. Smooth latent dynamics: Does the model impose smooth temporal

dynamics on the latent space (e.g. by assuming a linear dynamical

system, Gaussian process or using an RNN), as opposed to treating each

time point independently.

3. Spike-friendly: Was the method designed for spiking data. For

probabilistic models, this refers to whether the generative noise model is

Poisson as opposed to, say, Gaussian.

4. Exploit behaviour: Does/can the model use behaviour (as an observation,

contrastive loss-target, initialisation, or otherwise) to guide latent

discovery.

5. Scalable: Can the model scale to datasets of long duration. Specifically,

in available open-source implementations of the method does training/in-

ference have near-linear time complexity. Note this does not mean that

compute time is necessarily fast in an absolute sense, just that scaling is

linear.

Table E.3: A table of comparable models and their properties. N/A means the
criterion is not applicable to the model. N/S means the criterion is not specified or
may be dependent on implementation specifics. Techniques in bold are compared to
on my benchmark dataset in fig. 5.6

Model Complex

tuning

curves

Smooth

latent

dynamics

Spike-

friendly

Exploit

behaviour

Scalable

SIMPL (My method) Yes Yes Yes Yes Yes

GPLVM (Lawrence 2003) Yes N/S No Yes§ Yes#

P-GPLVM (Wu et al. 2017) Yes Yes Yes Yes§ No

M-GPLVM (Jensen et al.

2020)

Yes No No No Yes#

faeLVM (Bjerke et al. 2023) Yes† Yes Yes No Yes

PfLDS (Gao et al. 2016) Yes Yes Yes No Yes

Continued on next page
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Table E.3 – continued from previous page

Model Complex

tuning

curves

Smooth

latent

dynamics

Spike-

friendly

Exploit

behaviour

Scalable

VIND (Hernandez et al. 2018) Yes Yes Yes No Yes

pi-VAE (Zhou et al. 2020) Yes No Yes Yes Yes

CEBRA (Schneider et al.

2023)

N/A No Yes Yes Yes

MIND (Low et al. 2018) Yes No No No Yes

LFADS (Pandarinath et al.

2018)

No Yes Yes Yes Yes

TNDM (Hurwitz et al. 2021) No Yes Yes Yes Yes

GP-SDEs (Duncker et al.

2019)

No Yes N/S N/S Yes

rSLDS (Linderman et al.

2016)

No Yes No Yes§ Yes

gpSLDS (Hu et al. 2024) No Yes No Yes§ Yes

GPDM (Wang et al. 2005) Yes Yes No Yes§ No

MM-GPVAE (Gondur et al.

2023)

No Yes Yes No Yes

PSID (Sani et al. 2021) No Yes No Yes Yes

GPFA (Yu et al. 2008a) No Yes No No Yes#

P-GPFA (Nam 2015) No Yes Yes No No

SSMDM (Zoltowski et al.

2020)

No Yes Yes Yes Yes

PLNDE (Kim et al. 2021) No Yes Yes Yes Yes

GLDS (Kalman 1960) No Yes No No Yes

DKF (Krishnan et al. 2015) Yes Yes No No Yes

PLDS (Macke et al. 2011) No Yes Yes No Yes

UMAP (McInnes et al. 2018) N/A No No No No

TSNE (Maaten et al. 2008) N/A No No No No

pPCA (Pearson 1901; Tipping

et al. 1999)

No No No No Yes

Continued on next page
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Table E.3 – continued from previous page

Model Complex

tuning

curves

Smooth

latent

dynamics

Spike-

friendly

Exploit

behaviour

Scalable

dPCA (Kobak et al. 2016) No No No Yes Yes

#: Scalable if using an implementation making induction point approximations.
§: Algorithm could be initialised at behaviour.
†: Assumes neurons in a given ensemble have a shared tuning curve structure (e.g. Gaussian) with neuron-

specific transformations (e.g. shift and scale)
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