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Abstract 

Sleep is critical for consolidating all forms of memory1-3, from episodic experience to the development 
of motor skills4-6. A core feature of the consolidation process is offline replay of neuronal firing 
patterns that occur during experience7,8. This replay is thought to originate in the hippocampus and 
trigger the reactivation of ensembles of cortical and subcortical neurons1,3,9-18. However, non-
declarative memories do not require the hippocampus for learning or for sleep-dependent 
consolidation19-26 meaning what drives their consolidation is unknown. Here we show, using an 
unsupervised method, that replay occurs in the dorsal striatum of mice during offline consolidation of 
a non-declarative, procedural, memory and that this replay is generated independently of the 
hippocampus. Replay occurred at both real-world and time-compressed speeds and was also prioritised 
both at the level of the individual neurons and the type of neural sequence. Complete bilateral lesions 
of the hippocampus had no effect on any feature of this replay. Our results demonstrate that procedural 
replay during consolidation of a non-declarative memory is independent of the hippocampus. These 
results support the view that replay drives active consolidation of all types of memory during sleep but 
challenges the idea that the hippocampus is the source of this replay.  

The hippocampus is believed to be critical for the active consolidation of all types of memory as it is thought to 
trigger reactivation of cortical memory traces that, when strengthened over time can be activated independently 
of the hippocampus1,27,28. However, the hippocampus is not required for the formation of many forms of non-
declarative memory19-26. Indeed, lesions of the hippocampus may even facilitate procedural or associative 
memory formation20,24,26,29. This raises the questions as to how memories such as those for procedural skills are 
consolidated during sleep and whether there is a source of replay independent of the hippocampus. 

Development of a multi-step procedural memory task.  

To investigate the mechanisms that support offline consolidation of procedural memory we developed a multi-
step procedural memory task for mice. Mice were rewarded for nose-poking in the correct sequence of five ports 
(Fig.1a and Extended Data Fig.1a,b and Supplementary Video 1). Mice learnt to produce the sequence from 
memory (Fig.1b) and once experts, completed the full task with highly stereotyped timing and accuracy 
(Fig.1c,d and Extended Data Fig.1c). Trial-to-trial movement variability decreased across learning, (Extended 
Data Fig.1d) consistent with the notion that animals had acquired a stereotyped procedural skill. Motor skill 
learning and execution is thought to depend on the dorsolateral striatum (DLS)30,31. To confirm that the DLS 
was important for learning and executing our multi-step task we lesioned this structure prior to training using a 
viral caspase strategy (Fig.1e,f and Extended Data Fig.2a-c). Compared to control mice, DLS lesioned animals 
showed impaired task learning (Fig.1g,h and Extended Data Fig.3a). The learning curves between groups 
diverged at a training level where visual guidance was removed, indicating that the DLS is needed for learning 
to perform the sequence from memory but not in a light guided manner. This effect was specific to the DLS as 
mice with lesions to the adjacent dorsomedial striatum (DMS) did not show learning impairments (Extended 
Data Fig.3b-e).  Post-learning DLS lesions or inactivation impaired task performance and increased movement 
variability (Fig.1i-k and Extended Data Fig.3f,g,i), without affecting individual motor elements or port 
relevance recognition (Extended Data Fig.3h). Taken together, these results show that the DLS is required for 
learning and executing the motor sequence from memory. 
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NMDA dependent plasticity supports offline procedural memory consolidation in the DLS 

To determine if the DLS is involved in offline consolidation, we infused the NMDA receptor antagonist 2-
amino-5-phosphonopentanoate (AP5) into the DLS to disrupt offline striatal activity and plasticity32-34 . This 
was done immediately after the days training, before placing mice back into their home cage to sleep 32-34 
(Fig.2a,b, Extended Data Fig.4a). Testing the next day, 24 hours after infusion, across all infusion sessions there 
was a significant effect of AP5 infusion on performance (Fig.2c). In early training, mice in the AP5 cohort were 
significantly worse at the task the following day (Fig.2d), on average they dropped to a training level they had 
been at the day before the infusion session (Extended Data Fig.4b). This suggests that offline NMDA-dependent 
plasticity in the DLS is critical for consolidating the previous day's performance gains. To determine if offline 
activity and plasticity was also critical for maintaining procedural memory, we infused saline or AP5 for 4 
consecutive days in the DLS post-training (Extended Data Fig.4c). Infusion of AP5 for 4 consecutive days led 
to a significant drop in performance (Extended Data Fig.4d). Together these data suggest that offline processes 
in the dorsolateral striatum are critical for both learning and maintaining procedural memory of a stereotyped 
action sequence.  

An unsupervised approach for replay detection 

If an offline process supports procedural memory formation in the DLS, what could the underlying mechanism 
be? For episodic memories, replay of previously observed neural activity is thought to be the way in which 
memory is consolidated offline7,8. To search for similar neural reactivations in the DLS we implanted neuropixel 
probes through this region and recorded neural activity during task execution and post task sleep (Fig.3a). 
Typically replay has been identified using template-based approaches such as template matching or Bayesian 

Figure 1: Learning and execution of a novel sequence learning task is dependent on DLS 

 a. Top: schematic of the task. Bottom: Photograph of the port wall with task sequence overlaid. b. Training level progression curves (grey) for multiple 
animals with mean learning curve overlaid (dark green) (n = 33 animals, mean trials to level 50 = 1942 +/- 111; SEM). c. Example poke times from an 
expert animal. Port-poke-in times are shown (points) for each port relative to the start of trial initiation. All pokes in task irrelevant ports are labelled 
‘other’. d. Transition heatmap showing mean port to port transition proportions for multiple trained animals (n = 33). Each transition in the task 
sequence is represented by start (x-axis) and end (y-axis) ports. e. Schematic of the experimental approach for bilateral lesion of the DLS.  f. Histology; 
coronal sections showing neurons in one example hemisphere of the striatum (yellow outline) for lesion and control mice. g. Learning curve (training 
level vs trials) for control and lesion animal groups (shaded area denotes standard deviation, lesion n = 7 mice, control, n = 6 mice). h. Differences in 
performance between the groups. Dotted lines indicate the 95% confidence interval for the shuffled data (see methods). i. Average task performance 
scores (see methods) for the 3 sessions pre and post injection surgery (Kruskal-Wallis; p = 0.0006. For displayed stars, Post-hoc Dunn test; p = 0.002. 
lesion, n = 7 mice; control, n = 8 mice). j. Movement tracking (animal head) for 4 subsequence movement vectors for an example novice, expert and 
lesioned expert mouse. k. Average movement variability (standard deviation from mean trajectory) across the four subsequence trajectories for novice 
mice (n = 8 mice, n = 18 sessions) and expert mice before and after lesion to DLS (paired t-test; p = 0.0085, n = 5 mice). 
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decoding35-38. These approaches often carry 
assumptions, such as that neural sequences progress 
in a linear fashion, in a constant direction at a 
constant speed. These assumptions have been shown 
to limit the types of replay that have been detected in 
the hippocampus39. In the hippocampus, these 
methods are also usually applied during candidate 
epochs defined by the presence of sharp-wave ripple 
(SWR) oscillations which are thought to be a marker 
for hippocampal replay40. As we did not know of a 
heuristic biomarker for replay in the striatum and did 
not want to a priori limit the types of reactivations 
that we could detect we adapted an unsupervised 
point process model called PP-Seq41. 

PP-Seq aims to attribute individual neuronal spikes 
to a latent cause, in this case instances of particular 
neural sequences. Via an iterative collapsed Gibbs 
sampling procedure, the model fits free parameters to 
determine the number of latent events (neural 
sequences) and then attributes spikes to these 
sequences based on features of activity (Extended 
Data Fig.5a). In our raw neuropixel data there were 
no visible sequential patterns; however, clear 
sequences were revealed by sorting the neurons 
lexicographically according to the sequence type and 
the temporal offset parameter inferred by PP-Seq 
(Fig.3b,c). Using a hyperparameter search we found 
that our data was best described as containing six 
types of neural sequence (Extended Data Fig.6a-c).  
To determine if these neural sequences were related 
to aspects of our multi-step task, we aligned these 
neural sequences with video tracking data and 
coloured the tracking by the dominant sequence type. 
Strikingly, despite the model having no access to 
behavioural information, different types of neural 

sequences aligned to distinct phases of the behavioural sequence (Fig.3d-f and Supplementary video 2). In every 
mouse recorded, the behavioural sequence was accompanied by multiple neural sequences that aligned to 
distinct phases of the task (Extended Data Fig.5b). Not all neural sequences were aligned to distinct movement 
between the ports, in some animals specific neural sequences correlated with reward consumption or aligned 
tightly to other behavioural sequences that the mice performed during the recording session such as grooming 
(Extended Data Fig.5c and Supplementary video 3).  The neurons within a sequence type tended to spike at 
precise timing during the sequence and were also relatively exclusive, mostly spiking in one neural sequence 
type (Fig.3g-i). When neurons did contribute spikes to multiple types of neural sequence the spikes were most 
likely to occur in the preceding or following neural sequence (Fig.3j). Taken together, applying PP-Seq revealed 
that there were multiple neural sequences in the striatum that occurred at distinct phases of the behavioural 
sequence. This suggests that an aspect of procedural learning may be in learning to chain together these neural 
sequences that are correlated with individual portions of the behaviour.  

Procedural replay in the DLS 

To determine if the neural sequences that we observed in the awake data were reactivated offline during sleep 
we applied our awake trained PP-Seq model to post task activity recorded during sleep (Fig.4a) Neural 
sequences that were observed in the awake data were reactivated during sleep (Fig.4b,c) but were not present in 
shuffled sleep data (neuron IDs permuted, Extended Data Fig.7a). To benchmark our unsupervised method for 

Figure 2: Blocking offline plasticity and activity in the DLS 
impairs learning of procedural memory 

a. Histology showing an example hemisphere of a coronal slice after 
bilateral cannula implantation. Cannula tract (light blue) and 
striatum (dark blue) are outlined. b. Example animal learning curve 
showing AP5 and saline infusions (arrows) and test sessions 24 
hours after infusion (shaded). Infusions were performed the day 
before the test session, immedialty after training that day (see 
methods) c. Training level changes against the start level for all post 
infusion test sessions (saline and AP5) for all animals (n = 8). Lines 
show linear regression fit for each dataset with confidence interval 
(shaded region) (p = 0.033, Ordinary Least Squares regression). d.  
Training level change for early learning infusion experiments (p = 
0.00448, independent t-test). 
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replay detection we compared it with two Bayesian decoding methods, a classic linear decoding method36,42 and 
a state-of-the-art combined state-space and nonlinear decoding method39. On synthetic data, designed to create 
a ground truth dataset, PP-Seq was both more accurate and more sensitive at detecting replay than either of the 
decoding methods (Extended Data Fig 7b-e).  PP-Seq was also more robust at finding replay when noise, jitter 
and temporal distortions were applied to the data (Extended Data Fig 7f-i). In our actual recording data, the 
majority of PP-Seq identified replay events were also identified by the non-linear decoding method, validating 
that multiple methods identify replay of our task related activity in the striatum during sleep (Extended Data 
Fig.8a-g). Neural firing during replay followed a sequential ordering at the level of the single neurons (Fig.4d 
and Extended Data Fig.8h) and this ordering largely matched that observed for the same neurons during awake 
sequences (Fig.4e and Extended Data Fig.8i). At a macro scale, neural sequences were often replayed 

Figure 3: Unsupervised labelling of latent neural sequences in DLS during task practice.  

 a. Schematic showing implanted neuropixel probe locations projected onto standard Allen atlas coronal (top) and sagittal (bottom). b. Top: 
unordered example spike raster showing spikes for neurons in striatum recorded during task execution. Middle: the same spike raster but neurons 
ordered lexicographically based on PP-Seq identified neural structure. Bottom: Same as above but spikes coloured by which latent PP-Seq sequence 
they were attributed to. A rewarded and an unrewarded trial are shown (dashed boxes). c. Example PP-Seq ordered spike raster (as in panel b, 
grey bar bottom right) zoom in, showing two task trials with task relevant sequences labelled. d. Example movement tracking (animal head) from 
400s of task engagement, coloured by the current dominant PP-Seq sequence. e. Circularised task space coloured by the dominant PP-Seq labelled 
neural sequence. Hidden (non-dominant on average) task relevant sequence is represented by a star. Grey lines indicate respective task port 
locations across standardised space. f. Transition histogram showing numbers of sequence-sequence transitions during the example epoch. Task 
associated and non-task associated sequences are separated by the dotted line. g. Mean spike times during instances of each neuron's dominant PP-
Seq sequence for the example animal (Error bars show standard deviation over sequence instances). Neurons are ordered by offset from the earliest 
neuron in each sequence and sequences ordered by mean distance between sequence midpoints. h. Number of sequences neurons appeared in. For 
each analysed recording session, the percentage of neurons that contribute (appearing at least 10% of the time) to different numbers of sequences 
is shown. i. Mean relative percentage per session of spikes that were present in their most common (dominant) sequence. j. Mean neuron occurrences 
between neighbouring and distal sequences for neurons in each analysed recording session. Mean proportions are calculated relative to the 
dominant sequence proportion. Sequence order was most observed task order and neighbouring sequences were defined by those adjacent to the 
dominant (p = 0.027, paired t-test, n = 19 sessions, n = 7 mice, yellow markers indicate median) 
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Figure 4: Replay of procedural neural activity in the striatum during sleep  

a. Schematic of replay detection protocol. 1: PP-Seq model is trained on and detects repeating neural sequences within task related activity. 2: 
Fitted model is applied to sleep recording to identify recapitulated task related neural sequences. b. PP-Seq labelled sequences for example task 
related awake spikes. c. Example replay (same neurons as in b) of concatenated sequences that are ordered with respect to task related activity. 
d. Mean relative position of spikes, for neurons in each replay sequence observed during the example recording (error bars, SEM). e. Mean 
relative positions in awake sequences vs. replay sequences for all analysed neurons across every session (OLS regression, r = 0.64, p < 0.001). 
f. Example sleep period with PP-Seq labelled replay sequences g. Frequency of single (isolated) and concatenated events for each recording 
session. (difference from chance, one sample t-tests, left to right; p < 0.001, p < 0.001, p < 0.001, p = 0.0117, p = 0.0159, p = 0.0529) h. Relative 
frequencies of task ordered and disordered concatenated sequences (ordered difference from 62.04%: chance level, Wilcoxon signed-rank; p 
=0.0215. Difference between groups, permutation test: observed difference in means = 50.3%, 99th percentile permuted difference = 29.2%, p < 
0.001). i. Example replay sequences with varied warp characteristics. j. Distribution of warp factors for forwards and backwards replay events 
(1x represents awake speed) (forward reverse difference, Wilcoxon rank-sum test, p = 0.4810). k. Normalised percentages of task and non-task 
related replay observed (task related difference from chance level: 50%, one sample t-test; p < 0.001. Difference between groups, Permutation 
test: observed difference in means = 21.20%, 99th percentile permuted difference = 15.88%, p = 0.0004). l. Average (mean) replay event lengths 
observed for each recording session. m. Relative individual neuron involvement frequencies for each sequence during awake task activity and 
sleep periods (Exponential function fit by non-linear least squares, p < 0.001). n. Average (mean) start and end points for all forward (top) and 
reverse (bottom) replay events. Position is relative to the corresponding average awake sequence. o. Main: reactivation rates for each analysed 
sleep epoch against time from first sleep onset (OLS regression, r = -0.380, r2 = 0.145, p < 0.001). Inset: rate change against starting rate for 
each pair of analysed epochs per session. (for panels e-i, n = 19 sessions, n = 8 mice). 
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individually but also occurred in combination (Fig.4f,g). When combinations of sequential neural sequences 
were replayed, they were more likely than chance to occur in the order that they appeared in the awake data as 
mice performed the behavioural sequence (figure 4h). This shows that both the sequential firing within a neural 
sequence and the compositional order between neural sequences was maintained during replay.  

As with hippocampal-replay, during striatal-replay neural sequences often progressed faster than real world 
speed with the time course of the sequence being compressed (Fig.4i,j). Although neural sequences were on 
average more likely to occur faster than they were in the awake recordings, a lot of the sequences also occurred 
at real world speeds and could even progress slower. As with replay detected in other structures the individual 
reactivated neural sequences occurred in both forward and reverse direction (Fig. 4i,j). Across all events, 
roughly equal proportions of forward and reverse replay were observed, with replay speeds ranging from more 
than 5 times slower up to 20 times faster than awake activity. Task related neural sequences were more likely 
to be reactivated in post task sleep compared to non-task related sequences (Fig.4k) suggesting that the task 
related sequences were prioritised for reactivation.  Also, neurons that were more frequently involved in replay 
events tended to be those which consistently participated in the same neural sequence during awake activity 
(Fig.4m). This relationship was non-linear such that the neurons that most consistently contributed to the awake 
neural sequence were more likely to occur in replay and the reverse was true for neurons that inconsistently 
contributed to the awake neural sequence. This suggests that on the single neuron level cells that consistently 
contributed to the awake sequence were prioritised for replay.   

Like replay detected in the hippocampus our individual sequential events lasted around 100 – 400ms (Fig.4l)36. 
Analysis of the composition of each reactivated neural sequence revealed that replay tended to preferentially 
involve neurons which made up the central portion, rather than the boundaries, of each task related neural 
sequence (Fig.4n). The rate of replay also tended to decay from sleep onset and there was a significant 
relationship between time from first sleep onset and replay rate (Fig.4o). Analysing decay rate compared to 
current replay rate we found a strong relationship suggesting replay rate had nonlinear decay towards an 
equilibrium rate. Finally, analysis of recordings done during early learning revealed that replay characteristics 
were independent of learning stage (Extended Data Fig.9). 

In summary, applying PP-Seq to post task sleep revealed that neural sequences that occurred during the awake 
experience were replayed during sleep. The features of this replay were consistent with replay in other areas 
such as the hippocampus, in that it occurred at time compressed and real-world speeds and occurred in forward 
and reverse order. The striatal replay appeared to be structured in a compositional manner such that individual 
neural sequences could be replayed individually, in awake order or even in combinations that rarely occurred 
during behaviour. The replay was also prioritised both at the level of the type of neural sequence and even at 
the level of individual neurons within a sequence, consistent with the idea that replay is important for the 
consolidation of both sequential order and refining the execution of individual parts of the behavioural sequence. 

Procedural memory formation and replay are independent of the hippocampus.  

Having established that task related neural activity is reactivated offline and shown that it shares many features 
with previously observed hippocampal replay, we next aimed to investigate whether these similarities were 
indicative of shared, mechanistic dependency. Indeed, even for ultimately hippocampus independent memories, 
initial consolidation is thought to be organised by hippocampal dynamics1,2,16. Hippocampal SWR events have 
been shown to display consolidation dependent coupling with replay in cortical areas16,43, suggesting 
hippocampal dynamics may be an essential trigger or driver of replay in other regions. To test whether the 
hippocampus is required for procedural memory formation in our task we performed large bilateral lesions to 
the hippocampus via injection of viral caspase across the extent of the hippocampus (see methods) (Fig.5a and 
Extended Data Fig.10a-d). Despite these large lesions, hippocampus ablated mice showed no learning deficits 
for the task when compared to controls. Lesioned mice reached the final task level in an equivalent number of 
trials and their learning curves were not significantly different from controls (Fig.5b). After learning (trials 4000 
to 5000) mice completed the task with comparable movement speeds (Extended Data Fig.10e) and made a 
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similar number of port-to-port transition errors (Extended Data Fig.10f). Also, like control animals, lesioned 
mice were highly task focused; rarely poking into task irrelevant ports (Extended Data Fig.10g). In sum, we 
find that large bilateral lesions to the hippocampus did not impair learning or expert execution of the sequence 
task. Lesioned mice were indistinguishable from controls across all measures of task performance. 

Given procedural consolidation is independent of the hippocampus, a compelling hypothesis is that the 
hippocampus is not involved in shaping replay of procedural activity in the striatum. To test this, we performed 
large bilateral lesions of the hippocampus and then recorded neural activity in the DLS using implanted 
neuropixel probes (Fig.5c). Just like for baseline recordings (non-lesioned mice), applying PP-Seq to post-task 
sleep epochs revealed awake-like neural sequences replayed offline (Fig.5d,e). Across all measures, we did not 
find any differences in the characteristics of these events after hippocampus lesions. As observed in control 
recordings neural sequences were also ordered with respect to awake sequences at the single neuron level 
(Fig.5f). At a macro scale, sequences were also still replayed individually and in combination (Fig.5g,h). When 
neural sequences were replayed in combination, they were still more likely to occur in the order they occurred 
during the behavioural sequence (Fig.5i). The distribution of forward and reversed replay as well as the 
proportion of stretched or time compressed replay were the same between lesioned and control recordings 
(Fig.5j). There was also no difference in the rate, length, extent or decay of replay events between groups 
(Fig.5k, l, m and Extended Data Fig.11a). The proportion of task related replay was highly similar (Fig.5n) and 
analysis of single neuron contribution rates from awake activity to replay revealed no significant differences 
between groups (Extended Data Fig.11b). Together this suggests that the hippocampus has no role in generating 
striatal replay, in temporally compressing the replay, in compositionally ordering the replay, or in prioritising 
the replay at a neural sequence type or individual neuron level. 

Discussion 

Our results demonstrate sequences related to procedural experience are replayed in the dorsal striatum during 
sleep.  As with replay in other areas such as the hippocampus, the procedural replay we identify occurred at 
both real-world and time-compressed speeds39. Task related sequences were also preferentially replayed, and 
our unsupervised method revealed that this prioritisation also occurred at the level of individual neurons. 

Figure 5: Procedural memory formation and replay are independent of the hippocampus  

a. Top: schematic of the experimental approach for bilateral lesion of the hippocampus. Bottom: Histology, example NeuN stained coronal slices 
showing lesion extent across hippocampal volume for a mouse. b. Top: learning progression curves (training level vs trials) for control and lesion 
animal groups (shaded area denotes standard deviation). Bottom: differences in performance between the groups. Dotted lines indicate the 95% 
confidence interval for the shuffled data (see methods) (lesion n = 7 mice, control n = 6 mice). c. Schematic showing implanted neuropixel probe 
locations projected onto standard Allen atlas coronal (top) and sagittal (bottom). d. PP-Seq labelled sequences for example task related awake 
spikes. e. Example replay (same neurons as in d) of concatenated sequences that are ordered with respect to task related activity. f. Mean relative 
spiking positions in awake sequences vs. replay sequences for all analysed neurons across every session for lesion and control animals (Multivariate 
comparison between groups, MANOVA; Wilks lambda, p = 0.1797). g. Example sleep period with PP-Seq labelled replay sequences. h. Frequency 
of single (isolated) and concatenated events for each recording session (Differences between all groups, Kruskal-Wallis; p<0.001. Paired differences 
between lesion and control for each group, left to right, post-hoc Dunn test; p = 0.574, p =0.680, p=0.512, p=0.902, p=0.842). i. Relative frequencies 
of task ordered and disordered concatenated sequences with respect to observed awake task ordering for recordings containing 4 or more task 
related sequences (see methods). (Lesion, ordered difference from 62.04%: chance level, Wilcoxon signed-rank; p =0.0625. Control, ordered 
difference from 62.04%: chance level, Wilcoxon signed-rank; p =0.0215. Lesion, difference between subgroups, permutation test: observed 
difference in means = 73.9%, 99th percentile permuted difference = 52.2%, p < 0.00386. Control, difference between subgroups, permutation test: 
observed difference in means = 50.3%, 99th percentile permuted difference = 29.2%, p < 0.001. Pairwise difference for lesion and control ordered 
sequences, MannWhitney U test; p = 0.218). j. Distribution of warp factors for forwards and backwards replay events (1x represents awake speed. 
Differences for all warp factors, Kruskal-Wallis; p <0.0001. Paired difference for lesion and control, forward warp factor groups left to right, post-
hoc Dunn test; p = 1.0, p = 0.0743, p = 0.93175, p = 0.712, p = 0.319, p = 0.489, p = 0.939, p = 0.748. Paired differences for lesion and control, 
reversed warp factor groups left to right, post-hoc Dunn test; p = 1.0, p = 0.210, p = 0.985, p = 0.971, p = 0.359, p = 0.562, p = 0.275, p = 0.987). 
k. Average (mean) replay event lengths observed for each recording session. (Independent t-test, p = 0.5089). l. Average (mean) start and end points 
for all forward (top) and reverse (bottom) replay events. Position is relative to the corresponding average awake sequence (comparison between all 
groups, ANOVA; p <0.001. Pairwise comparison between forward start groups, Tukey HSD; p = 0.749. Pairwise comparison between forward end 
groups, Tukey HSD; p = 0.949. Pairwise comparison between reverse start groups, Tukey HSD; p = 0.977. Pairwise comparison between reverse 
end groups, Tukey HSD; p = 0.880). m. Reactivation rates for each analysed sleep epoch against time from first sleep onset (Multivariate comparison 
between groups, MANOVA; Wilks lambda, p = 0.8961). n. Normalised percentages of task and non-task related replay observed (lesion, task related 
difference from chance level: 50%, one sample t-test; p = 0.289. Control, task related difference from chance level: 50%, one sample t-test; p < 
0.0001. Lesion, difference between subgroups, Permutation test: observed difference in means = 16.9%, 99th percentile permuted difference = 25.2%, 
p = 0.0626. Control, difference between subgroups, Permutation test: observed difference in means = 21.20%, 99th percentile permuted difference 
= 15.88%, p = 0.0004. Pairwise difference for lesion and control task related sequences; independent t-test, p = 0.898). (Control: n = 19 sessions, 
n = 8 mice, lesion: n = 9 sessions, n = 3 mice). 
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Surprisingly all these features were generated independently of hippocampus.  

Previously it was proposed that the hippocampus may be critical for the active consolidation of both 
hippocampal-dependant declarative memory as well as memories that do not require the hippocampus for 
expression, such as procedural memory2,3,11,17,44. It was proposed that replay of a spatiotemporal context in the 
hippocampus could trigger the active consolidation of all kinds of memory by boosting context-related 
representations throughout cortical and subcortical circuits3,11,17. In contrast to this theory our results show that 
the hippocampus is not involved in either the generation of replay in the dorsal striatum or the consolidation of 
our procedural memory task. Our results support the alternative idea that there are “parallel memory 
systems”23,24,45 where consolidation can occur independently. We suggest that within the parallel memory 
systems replay may be a common mechanism for active consolidation. This suggests that either there are 
different sources of replay for distinct types of memory or that there may be a common unappreciated source 
for generating replay that is independent of the hippocampus. While our results support a body of literature that 
has shown procedural memories can be formed independently of the hippocampus19,20,23-26,46,47, others have 
shown that the hippocampus can in specific situations support the sleep-dependant consolidation of procedural 
memory9,14,16,48-50. In these latter cases it may be when the spatiotemporal context, or some other hippocampal 
dependant computation is important for learning48. Together our results support the theory that declarative and 
non-declarative memories can be consolidated in parallel but show that replay may be a common mechanism 
for active consolidation of both types of memory23,47,51.  

If replay is a universal mechanism for memory consolidation, then what is the mechanism for driving replay if 
it is not the hippocampus? One option is that the hippocampus still generates replay for declarative memories 
and there is a different source for replay in circuits related to procedural and other types of non-declarative 
memory. However, even in cortical-hippocampal loops there is some evidence that patterned activity in the 
cortex precedes and predicts the content of replay in the hippocampus27,28,52,53. This suggests that replay may 
originate in parallel in both the cortex and the hippocampus. We suggest that it needs to be considered that 
replay is a phenomenon that occurs spontaneously in cortical and potentially other networks and that there might 
not be a single source.   

Unsupervised methods may help uncover the source of replay. 

Whether there are specific circuits that generate replay or not we propose that the use of unsupervised methods 
such as the one that we adapted here will aid in the investigation of replay. One advantage of these approaches 
is that they reduce the a priori assumptions about how replay should progress, such as that sequences of activity 
progress in a linear manner (for discussion see35,39). These assumptions have been shown to limit the types of 
replay that is identified. When recent methods that removed the assumption about the constant speed of replay 
were developed, hippocampal replay was found to progress at a range of speeds including real-world speeds30, 
just like the striatal replay we identify in this paper. Unsupervised approaches can also be used to examine 
replay without the generation of a behavioural template54,55, the weakness of this is that these approaches can 
identify neural sequences that are not related to the behavioural features of interest. This might make these 
approaches better suited for tasks with repetitive task structure, like our task. When these methods are applicable 
we show that they can in practice be more sensitive and accurate than even state of the art decoding methods. 

Striatal replay 

Our discovery that replay occurs in the dorsal striatum independently of the hippocampus is consistent with 
previous work that has shown that there is reactivation of task related ensembles in the dorsal striatum following 
motor skill learning and that this occurs in combination with an increased synchrony between cortical and striatal 
ensembles33,56. We now show that the features of this reactivation mirror those associated with replay in the 
hippocampus and cortex. This sets the stage for investigating the role replay plays in a host of dorsal striatum 
dependent tasks from, perceptual learning to value based decision-making57-60. It will be of particular interest to 
determine how striatal replay is coordinated with dopamine release as both phenomena are strongly linked to 
memory formation57,59,60. Indeed, in quiet wakefulness reward related neurons in the ventral tegmental area, 
putatively dopamine neurons, are coordinated with hippocampal replay but this is not the case during sleep61. 
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Despite this, dopamine has been shown to have a causal role in offline memory consolidation62-65 and whether 
this is due to coordination between replay and dopamine release in the dorsal striatum needs to be investigated.   

Limitations 

Currently we have shown that offline processing in the striatum is needed for procedural memory consolidation 
and suggest that replay might be the process that drives this active consolidation. To prove this, it will be 
important to selectively disrupt striatal replay and assess the impact on memory formation. A similar approach 
is possible in the hippocampus because replay is believed to occur almost exclusively during sharp wave 
ripples40. Due to this, closed-loop inactivation of the hippocampus during ripples has been used as a good proxy 
for disrupting replay and showing it causally contributes to consolidation66-69. Without a biomarker for striatal 
replay a similar approach will not be possible, new approaches may need to be developed to rapidly detect the 
onset of replay to target these patterns for disruption.  

Summary 

In conclusion we have shown that replay occurs in the dorsal striatum following procedural learning and have 
demonstrated that this process is independent of the hippocampus. We propose that replay is a common 
mechanism used to actively consolidate all forms of memory during sleep, but that source of replay may be 
distinct depending on the type of memory. Future work will be needed to identify the sources of hippocampal 
independent replay and determine how replay in distinct networks is coordinated for the appropriate 
consolidation of memory.  
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Materials and methods  

Animals 
Adult male and female Mice (8-50 weeks) C57BL/6J (wild-type) were used. Mice were housed in HVC Cages 
with free access to chow and water on a 12:12 h inverted light:dark cycle and tested during the dark phase. Mice 
used in sleep recording experiments were housed on a non-inverted light cycle and tested during the light phase 
(normal daylight hours). For behavioural experiments, mice were water deprived. Animals had access to water 
during each training session, and otherwise water was administered by hand. Water was supplemented as needed 
if the weight of the mouse was below 85%. All experiments were performed in accordance with the UK Home 
Office regulations Animal (Scientific Procedures) Act 1986 and the Animal Welfare and Ethical Review Body 
(AWERB). Animals in test and control groups were randomly selected. 

Behavioural procedures 
Mice were trained in custom built behavioural arenas measuring approximately 16cm x 19cm x 24cm (width, 
length, height). Box walls were made of 0.5cm thick opaque white or transparent red acrylic and had 8 poke 
ports mounted on the front wall. Ports (sanworks, ID 1010) protruded 2cm from the wall into the area and were 
arranged in a 4 x 2 grid such that neighbouring ports (vertical and horizontal) were 3cm apart (centroid to 
centroid). Ports contained side mounted infrared LED and sensor to detect poke events and a back mounted 
visible light LED to illuminate the port. Each port also contained a waterspout for reward delivery. Poke events 
were registered by Sanworks port PCBs (ID: 1004) connected to a Bpod (ID: 1027) programmed with a custom 
behavioural protocol (MATLAB). 2ul Water delivery was triggered by Bpod via a connected Miniature 
Solenoid (Lee Company: LHDB0513418H). Sounds were played at port entry via a speaker (DigiKey part 
number: HPD-40N16PET00-32-ND) and amplifiers (DigiKey part number: 668-1621-ND). 

Mice were rewarded for completing the full 5 step poke sequence. No reward was given if animals missed a 
step in the sequence, but animals were not punished for adding extra steps into the sequence. Single trial events 
were defined as all poking activity that led to reward delivery at the final port. Within a single trial, animals 
could make multiple attempts at completing the sequence or add additional elements to the sequence and still 
eventually receive reward. The task was self-paced though if an animal initiated a trial but did not register a 
poke into any port for 30s this trial timed out, was left unrewarded, and a new trial was cued. Across all levels, 
when animals entered a port (breaking the IR beam) a short duration sibilant noise was played. 

Poke sequences were shaped by an automatic protocol with 50 training levels of predefined difficulty. Mice 
started from the lowest level (Level 1) and progressed up to the final task (Level 50) (Extended Data Fig.1a-b). 
During training, performance was assessed every 10 trials and this metric determined whether mice progressed 
up a level (performance > 90%), regressed down a level (performance < 20%), or remained at the same training 
level (20% < performance < 90%). In Early task levels (1 – 12) mice were rewarded for performing each step 
of the 5-step sequence. With progression to higher levels, reward steadily decreased and then switched off port-
by-port until reward was only given upon reaching the final port (levels 12 - 50). In early task levels (1- 12) 
each step in the sequence was also visually guided by successively illuminating port LEDs which were switched 
off port-by-port once the animal had successfully poked. After this (levels 12 – 49), across successive levels 
LEDs brightness was gradually dimmed port-by-port and eventually turned off permanently, except for the 
initial port in the sequence which remained illuminated at the start of each trial to signal a new trial was available. 
At the final stage of the task (level 50) only the first port in the sequence was illuminated in this way. Even after 
reaching the final task (level 50), during training animals could drop down to lower levels if they performed 
badly. However, in circumstances where it was necessary to test animal performance at the full task, mice were 
held at level 50 for the duration of the session. For AP5 infusion experiments, to increase sensitivity to 
performance changes during test sessions, training performance was assessed (and training level updated) every 
4 trials. For hippocampus lesion experiments animals were trained on the task for at least 5000 trials except for 
one animal which was only trained for 2004 trials. This animal was excluded from analysis of post learning 
performance (Extended Data Fig.e-g) for this reason.   
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Surgical procedures 
Mice were anaesthetised with Isoflurane (0.5–2.5% in oxygen, 1 l/min) - also used to maintain anaesthesia. 
Carpofen (5 mg/kg) was administered subcutaneously before the procedure. Craniotomies were made using a 
1-mm dental drill (Meisinger, HP 310 104 001 001 004). Injections were delivered using pulled glass pipettes 
(Drummond, 3.5”) on a stereotaxic frame (Leica, Angle TwoTM). 

For striatal lesions, initial lesions were excitotoxic via injection of NMDA (2mg/100mL), though for most 
animals shown lesions were achieved by injecting a 1:1 mix of AAV2/1-hSyn-Cre (1014 vg/ml) and AAV2/5-
EF1a-DIO-taCasp3-T2A-TEVp (1014 vg/ml) as this proved more successful.  The mix was diluted 5 times in 
saline buffer prior to injection. For control animals, saline or GFP virus AAV2/5-CAG-EGFP (1043 vg/ml) was 
injected instead. In each hemisphere 4 injections (~80nl each) at 3 different depths were made to distribute the 
viruses as evenly as possible and to provide enough coverage, injections were targeted to the DLS or DMS 
dependent on the experimental group. For DLS, injections were made at coordinates AP: 0.2 to 0.8mm ML: 2.5 
to 2.7mm DV: -3.0mm to -3.7mm (where a range is given, injections were given at regular spacing between 
these values). For DMS, insertions were made at coordinates AP: 0.2 to 0.8mm ML: 1.8mm DV: -3.0mm to -
3.7mm.   

For hippocampus lesions, this same cre-caspase mixture as used in the striatal lesion experiments was injected. 
Control animals underwent the same surgical procedures except saline was injected instead. Injections were 
made bilaterally at 13 locations per hemisphere (see Table 1). After surgery, animals were given at least 3 weeks 
of recovery before training was started.  

For Cannulation experiments, 5mm 26-Gauge 
cannulas (P1 technologies, cat number: C315GS-
5/SPC) were implanted at coordinates anterior 
posterior (AP) 0.5mm, medial lateral (ML) 
2.9mm and dorsal ventral (DV) 2.0mm from pial 
surface, with a 10 degrees’ tilt (tip tilted towards 
midline). For optogenetic experiments, we 
implanted flat optical fibers of 200μm diameter 
(Newdoon: FOC-C-200-1.25-0.37-7) at AP -
1.6mm, ML -1.9mm, DV 2.8mm (20 degrees’ 
tilt).  Implants were affixed using light-cured 
dental cement (3m Espe Relyx U200) and dental 
cement (Super-Bond C&B Bulk-mix, Sun 
Medical) and the wound sutured (6-0, Vicryl 
Rapide). 

For neuropixel implantation, prior to training 
animals underwent an initial surgery where the 
skull was exposed, coated with a thin layer of 
dental cement, and marked for later skull 
levelling. A craniotomy was drilled over an 
arbitrarily chosen region of posterior cortex and a 
ground pin was implanted. To replicate the weight 
and size of the eventual implant, mice were 
trained on the task with a size and weight matched 
dummy implant, this was fixed during initial 
surgery to the cement layer using silicon (Kwik-
sil: World Precision Instruments). For probe 
implantation, the dummy implant was removed, 
and the skull was levelled using previously noted 
skull markings. A craniotomy and durotomy was 
made at coordinates AP 0.8mm, ML = 2.1mm and 

Table 1: Positions of injections into hippocampus 
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the probe was implanted to a depth of 4.0mm at a 10-degree angle (tip tilted away from midline). The external 
grounding wire was fixed to the previously implanted skull pin. The craniotomy was then sealed using Duragel 
(Cambridge Neurotech) and a 3D printed casing was fitted around the probe for protection. Implants were 
performed using a retrievable system and, in some cases, animals were reimplanted with a second probe. At the 
end of the experiment, probes were recovered for future reuse. 

Electrophysiological recordings 
Animals were habituated to the size and weight of the implant by first training on the task with a size and weight 
matched dummy implant fixed to the skull. Dummy implants were constructed from a 3D printed plastic casing, 
aluminium implant cassette and surgical tape. During training, to simulate eventual recording conditions animals 
were tethered to an overhead cable connected to a motorised rotary joint (Doric, B330-1027-001). Mice were 
also habituated to sleeping in their home cage while connected to this tether. To increase sleep incidence during 
recordings, all mice (except for one) were housed with a normal light dark cycle. Neuropixel 1.0 (phase3B) 
probes were implanted through motor cortex and striatum and after implantation, daily recording sessions were 
conducted as continuous recordings across sleep and task epochs (3-6 hours). 

Recordings were acquired using neuropixels acquisition hardware (imec neuropixels 1.0 headstage, interface 
cable and PXIe Acquisition Module) with open-Ephys software. Post-acquisition spike sorting was done using 
Kilosort370. Spike sorting was checked using Phy2 (https://github.com/cortex-lab/phy/) but analysis was not 
performed on manually curated clusters. 

Pharmacological manipulations 
For Muscimol infusions, ~30nL of either muscimol (Sigma-Aldrich) at 0.2mg/ml or saline buffer were infused 
via implanted cannulas. The infusion system consisted of a 1µl Hamilton syringe (Merck), plastic tubing (P1 
technologies cat no. 8F023X050P01) and injection cannulas (P1 technologies cat no. C200IS-5/SPC). Tubing 
was filled with mineral oil to ensure an air-tight setup for accurate volume administration. Animals were briefly 
headfixed and infused at a rate of 10nl/min for 5 minutes per cannula. Animals were then allowed to rest in their 
home cage for 10-15 minutes and tested on the task. Between muscimol infusion experiments animals were 
given recovery break of at least a day and task behaviour was assessed on this break day ensure performance 
returned to that pre-infusion. All animals were habituated to headfixing prior to experiment onset. 

For AP5 experiments, we adapted methods described previously33. We bilaterally infused 450nl saline or 450nl 
of 5µg/µl D-AP5 (Bio-Techne, diluted in saline), via cannulae implanted into the dorsolateral striatum. 
Immediately after training, animals were headfixed and infusions were carried out at a rate of 65-90 nl/min for 
5-7 minutes per cannula. After infusion animals were returned to their home cage. In the test session the next 
day (approximately 24 hours later), animals were trained on a performance sensitive version of the behavioural 
task (see Behavioural training). This allowed for higher sensitivity in detecting changes to task performance. 
Infusions during learning were done from levels 12 to 49 (after the reward guided habituation phase: levels 1 to 
11). Infusions were done if animals climbed at least 3 levels that session but were not done on consecutive days. 
Before the experiment, animals were habituated to head-fixing. Infusions of saline and AP5 were alternated 
throughout the learning curve of each animal. After learning, once animals reached stable expert performance 
(level 50) for at least 4 days, infusions of either saline or AP5 were given for 4 consecutive days. All mice were 
used for both experimental groups and so before switching the type of infusion animals were trained until at 
least 4 days of stable expert performance was seen. One animal was unable to reach level 50 with stable 
performance so was excluded from this experiment. 

Tissue processing and image analysis 
At the end of experiments, animals were euthanized via intraperitoneal (IP) injection (10 ml/kg pentobarbital) 
and brain tissue fixed via vascular perfusion (4% paraformaldehyde) and collected for histology. Prior to 
implantation, neuropixel probes were coated in dye (DiI) for later visualisation. Brains were imaged using a 
serial section two-photon71.Our microscope was controlled by ScanImage Basic (Vidrio Technologies, USA) 
using BakingTray, a custom software wrapper for setting up the imaging parameters: 

§  https://github.com/SainsburyWellcomeCentre/BakingTray,https://doi.org/10.5281/zenodo.363160 9 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 6, 2024. ; https://doi.org/10.1101/2024.06.05.597547doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.05.597547


14 
 

Images were assembled using StitchIt: 

§  https://github.com/SainsburyWellcomeCentre/StitchIt,https://zenodo.org/badge/latestdoi/57851444 

The 3D coordinates of the injections, fiber, cannula and neuropixel probe placements were determined by 
aligning brains to the Allen Reference Atlas (Allen Reference Atlas – Mouse Brain. Available from atlas.brain-
map.org.) using brainreg72, and the tracks were located and traced in common atlas coordinates (brain-reg 
segment). 

Brain slices were all stained following the same procedure: Blocking in staining solution (PBS + 1%BSA + 
0.5%Triton-X) for 1 hour. Primary antibody(s) (1:1000 in staining solution) for 2-4 hours at room temperature 
or overnight at 4 degrees Celsius while rocking. 15 minutes wash with staining solution. Second antibody(s) 
(1:1000 in staining solution) and DAPI for 2 hours at room temperature while rocking. Slices were then washed 
in PBS and mounted using Prolong or ProGold mounting medium (Thermo-Fischer). Primary antibodies used 
were NeuN (abcam, ab177487) & GFAP (abcam). Secondary antibodies used were Alexa-488 anti-chicken 
(Thermo Fischer, A-11039) and Alexa-647 anti-rabbit (Thermo Fischer, A-21245).   

For striatal lesions brains were sliced using a cryotome at a thickness of 40um and with a vibratome at 100um 
for hippocampal lesions.  15 to 20 slices covering the entire region at regular intervals were selected for NeuN 
and GFAP staining. Slices were mounted in standard glass slides using standard mounting medium, and 
subsequently imaged in the Slide Scanner (Zeiss) using a 20x objective. Lateral and medial striatum were 
defined by the extent of axons from prelimbic/cingulate projections and motor cortical projections respectively 
(Allen projection experiment numbers: 157711748, 112514202, 180720175 & 180709942). The lesioned areas 
for each of these regions was determined manually for each slice using Brainreg segment. For striatal lesions 
mice with lesions that had more than 20% of volume overlapping with cortex were excluded from analysis. 

Performance measures 
A trial was defined as all the poke events that occurred proceeding reward or trial time out (no pokes for 30s) 
Performance was calculated per trial and involved segmenting sequence pokes into ‘attempts’ which were 
temporally relevant (within 2s of each other). Attempts were considered as starting only from the initiation port 
(port 1), any pokes that occurred before the first poke into port 1 were excluded. An attempt was assigned a 
value of 1 if it contained the perfect poke sequence and 0 if it contained an error. The mean score across these 
attempts was then calculated. During training a simplified measure was used to calculate ongoing trial by trial 
task performance used for updating training level; rather than across ‘attempts’, the same measure was 
calculated across trials. Ongoing performance was scored as a mean over a window of 10 trials except for AP5 
test sessions where this window was reduced to 4 trials. 

Video tracking analysis 
Videos were captured at 60 fps and mouse movements were tracked using DeepLabCut73. Tracking points below 
98% confidence interval were excluded and replaced by interpolating between accepted points. Task movement 
variability was first calculated individually for different task subsequence (movement vectors). To achieve this, 
only trajectories that passed close to each port in the subsequence (within a 1cm radius) in order and with 
appropriate timing (within a 2s port-to-port time window) were considered. Trajectories were averaged to find 
the mean trajectory curve. This curve was then segmented into 3000 spatial bins to be used as a reference and 
the distances between each data point in each trajectory and their closest spatial bin were noted. These distances 
were then used to calculate the standard deviation (movement variability) of each tracked trajectory from the 
mean curve. To create the standard space sequence occurrence plots during analysis of PP-Seq output data 
similar analysis was done. However, average trajectory curves were generated for the entire task sequence rather 
than individual subsequence chunks. 

PP-Seq replay detection  
We adapted PP-Seq41 such that after training the model on a set of awake data, the parameters which defined 
each neural sequence could be fixed per their fit from the awake data. This allowed us to then apply each trained 
model to sleep data, in order to search for the same recapitulated neural sequences. Our adapted model can be 
found here:  
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https://github.com/lindermanlab/PPSeq.jl/pull/15.  

Running PP-Seq41 required setting 12 hyperparameters. The three values related to background firing were set 
accordance with reported literature, as were those related to width of a neurons response. Of the seven remaining 
hyperparameters 5 were chosen by grid search (see Table 2) (Extended Data Fig.6), the other two were found 

in preliminary work to have little effect 
on the overall PP-Seq output. We used 
cross-validation to train and test the 
model: a subset of spikes was held-out 
from the data, the rest used to train the 
model, then the log-likelihood of the 
held-out spikes was measured under the 
trained model. The hyperparameters that 
led to the highest held out log-likelihood 
were taken as those which best capture 
the structure in the data and could predict 
held-out spikes. We chose our selected 
model from the top 20 models (all within 
error of each other) by visual inspection 
of the output labelling. Together this 
specified the 12 hyperparameter values 

that we used for our subsequent analysis. We performed this hyperparameter fitting on the data from one animal, 
then used the same values, occasionally scaled for the number of neurons and average firing rate in the data, for 
all other mice. 

The PP-Seq algorithm was then applied to each recording session individually. Striatal neurons were first 
filtered to remove high and low firing rate units (Fano factor 0.5 -12) and a 600s period of high task engagement 
awake activity was chosen to fit the model on. To sample replay during our offline recordings PP-Seq was 
applied to segments (500-1500s) of the recording totalling at least 2000s throughout the sleep period. When 
applying PP-seq during sleep we permitted each model to fit an additional 2 latent sequences and allowed a 
range of time warp values. Hence, after applying to sleep, up to latent 8 sequences, with various timewarps 
could be reported by the model.  

After running PP-Seq, the neural sequences in awake and the sleep recordings were pre-processed before further 
analysis was performed. Since PP-Seq is a probailistic model its outputs represent a posterior over the 
assignments of the spikes to each latent, in the form of many samples from the posterior. We made use of this 
to filter for only high confidence assignments, by analysing only spikes that were consistently assigned to a 
sequence with 75% probability. Single replay events were defined by binning PP-Seq labelled spikes into 20ms 
time bins and grouping bins together if they were adjacent and contained spikes for a given sequence type. 
Replay instances were only analysed during classified sleep periods and replay events were then excluded from 
analysis if they did not contain at least 5 spikes. Coactive replay events were defined as any sequence of events 
that occurred within 300ms of each other. Replay events were filtered further by regression analysis of their 
progression with respect to average awake sequential position. Regression slopes were used to define warp 
factor for each replay event. For analysis of coactive sequence ordering, ordered coactive pairs of sequences 
were those which respected observed task ordering (forward or reversed) or pairs which were a repeat of the 
same sequence type. Disordered sequence pairs were those which did not normally occur adjacent to each other 
in the task sequence (forwards or reversed). Recordings with only 3 task related sequences were excluded from 
this analysis as they could not contain disordered pairs. To determine replay propagation extent compared to 
awake sequences, neuron-to-neuron spike ordering for each event was compared to the expected awake ordering 
for that event type.  

Bayesian decoders 
The state space decoder (decoder 1) used was as described in39. Models were trained for each recording session 
to predict a two-dimensional posterior (video tracking position) from spiking data. The linear decoder (decoder 

Table 2: PPseq model hyperparameters  
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2) used was as described in42. Models were trained for each recording to predict a one-dimensional posterior 
(linearised task space taken from average video tracking position). Training data for each model was filtered to 
only include successful movement trajectories. Filtering was done spatially: only trajectories that passed close 
to each port (within a 1cm radius) in order and with appropriate timing (within a 2s port-to-port time window) 
were considered. Spatial bins were 3 times the average distance travelled in one-time bin (20ms), on average 
this corresponded to approximately 400 spatial bins. 

Replay detection was done by applying the trained models to short data segments of interest; usually 1-5s of 
data. For decoder 2, detected events were defined as true replay or noise by quantifying the spatial coherence 
of the decoded position. This was defined by whether the number of spatial bins necessary to explain the prior 
position up to a 95% confidence interval was within a threshold value. Thresholds were calculated prior to 
applying the decoder to sleep data. For each event type in each recorded session the threshold number of bins 
was calculated from the distribution of 95% posterior density for more than 200 hundred awake events and 
periods of random noise activity. Based on these distributions, the threshold value was set to maximize the 
number of true positive while minimizing the number of false positive events.   

For decoder 2, replay was assessed as described in42. Putative replay events were first scored using a line-fitting 
algorithm and events with a reasonable linear fit were then assessed for significance through a shuffle analysis. 
Both of these analyses depend on a width parameter which scales the degree of variation from linear fit which 
is accepted. This parameter was set dynamically for each model by comparing the rate of true and false positive 
synthetic replays found. The chosen parameter for each model was that which maximized true replay detection 
while minimising false positives.  

Synthetic data testing 
The synthetic replay data was generated by implanting PP-Seq detected sequences into background noise. 
Background noise was generated by randomly permuting neuron IDs from awake activity. Hence, spiking 
content in background noise and the original spike data was identical, but the neuron Ids given to PP-Seq were 
shuffled. For each test, sequences were extracted from the corresponding PP-Seq labelled awake dataset by 
manually setting an inclusion zone generated by a time window centred on the middle of the detected sequences. 
All spikes in each inclusion zone were extracted. Sequences were then filtered for representative, non-
contaminated sequences. This was done by excluding the top and bottom 25% of sequences based on total 
sequence spikes and the number of contaminant (other sequence) spikes in these windows. Sequences that did 
not occur regularly in the labelled data were excluded from this analysis. From all extracted sequences, 200 
sequences were then chosen (selected to maximise equal numbers from all sequence types extracted) for 
implantation into 600s of noise. When required, sequences were then manipulated and altered. For warp values 
which stretched the sequences, fewer than 200 were implanted to avoid excessive overlap between sequences. 
In rare cases where less than 200 sequences were originally extracted in total then random sequences from 
underrepresented groups were duplicated to make up this number. The chosen sequences were then randomly 
ordered and implanted into noise roughly equally spaced apart. Noise data was deleted where sequences were 
implanted such that the implanted sequences replaced spikes in these regions. For PP-seq testing, replays were 
considered correctly labelled if they were identified as the same sequence type that was inserted in the synthetic 
data, otherwise they were deemed mislabelled. For decoder testing, events found that had a spatial overlap of at 
least 40% with the original inserted replay location were considered as correctly labelled events, those that 
didn’t were deemed mislabelled.  

Sleep state classification 
For each analysed epoch, sleep state was determined using LFP and movement. LFP from several (minimum 3) 
evenly spaced striatal electrodes along the neuropixel was pre-processed by manually excluding noisy 
electrodes, z scoring, and then a mean striatal LFP signal was generated. Movement was determined from video 
tracking. Processed, z-scored tracking points were averaged and used to determine mean movement velocity for 
each time window.  Movement velocity below a threshold (0.8 times Standard deviation) was classified as 
putative sleep. Putative sleep periods were then validated using delta and theta spectral power as has been 
described previously 35. 
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Statistical analysis 
A one sample t-test (1 group), paired t-test (2 groups) or one-sample ANOVA (3 or more groups) were carried 
out when the assumptions for a normal distribution of observation within groups (Shapiro-Wilks test) were 
satisfied. Otherwise, the non-parametric Wilcoxon signed-rank, Mann-Whitney U test or Kruskal-Wallace test 
were used. When there were unequal observations between groups, an independent t-test was used, given the 
assumptions were satisfied. When data (2 or more groups) were multivariate a MANOVA was performed. For 
the statistical analysis of training learning curves, the data was down sampled into bins of 100 trials. Each 
animal’s learning curve was randomly reassigned to the lesion or control group to look at the mean difference 
between controls and lesions. This shuffling of learning curves was repeated 10000 times, and all 10000 means 
were used to find the 95% confidence interval for the difference in the data due to chance. For comparison 
between task and non-task related replay sequences a similar permutation test was performed and repeated 
10000 times. The resultant distribution of means was analysed and the 95% confidence interval reported. For 
analysis of coactive replay rates, expected percentages were calculated as the independent Poisson probability 
given the mean rate of replay events (individual sequences) and a time interval of 300ms plus average replay 
event length. For ordered and disordered replay analysis, expected percentage ordered and disordered were 
calculated from the expected ratios of ordered and disordered given the number of task related sequences in 
each recording. These expected ratios were summed across recordings to find overall expected percentages.   

 

Supplementary videos 

Supplemental videos link  
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Extended Data Figures 

 

 

Extended Data Figure 1: A novel sequence learning task based on sequence learning. 

a. Schematic showing light guidance and reward delivery at each port in the task sequence for each training level. b. Example animal training level 
progression and regression learning curve. Reward and light guidance shut off points are denoted by dotted lines. c. Port poke occurrences (mean) for 
expert animals (trials 3000 to 3500, n = 33, SEM for each port shown in grey). d.  Average movement variability (standard deviation from average 
trajectory) across all subsequence task movements for mice at different levels of task experience (n = 8 mice). Above: example tracking data showing 
subsequence trajectories from a novice mouse (i) and an expert animal (ii). Number of trials is total completed prior the tracking session (tracking point 
was centre of the head). 
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Extended Data Figure 2: Striatum lesion extent. 

a. Allen reference projections from prelimbic and cingulate cortex (left, Allen experiment: 157711748 & 112514202) and motor cortex (right, Allen 
experiment: 180720175 & 180709942). b. Allen projection defined DMS (blue line) with largest DMS lesion (blue shaded) and smallest DMS lesion 
(turquoise shaded) for the extent of striatum. Allen projection defined DLS (red line) with largest DLS lesion (red shaded) and smallest DLS lesion (pink 
shaded) for the extent of striatum. c. Percentage of total DLS and DMS volumes lesioned for each animal in the two respective groups. Total volume of 
each region is shown (grey background) as well as the smallest and largest lesions in each group (light and dark coloured lines). DLS lesions are further 
subdivided into those animals lesioned while naive; for pre-training experiments (square markers), and animals that were lesioned while task experts for 
post-training experiments (circle markers). 
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Extended Data Figure 3: Task learning and execution are dependent on the DLS and not DMS. 

a. Left: maximum training level achieved within criterion (4000 trials) for DLS lesion and control animals. Right: trials to reach maximum attained level 
(max level, p = 0.001, trials to max, p = 0.0008, independent t-test, lesion; n = 7 mice, control; n = 6 mice). b. Schematic of the experimental approach 
for bilateral lesion of the DMS.  c. Histology; coronal sections showing neurons in one example hemisphere of the striatum (green outline) for DMS lesion 
and control mice. d. Top: Learning rate (training level vs trials) progression curves for control and lesion animal groups (shaded area denotes standard 
deviation). Bottom: differences in performance between the groups. Dotted lines indicate the 95% confidence interval for the shuffled data (see methods). 
e. Left: maximum training level achieved within criterion (4000 trials) for DMS lesion and control animals. Right: trials to reach maximum attained level 
(DMS lesion; n = 6 mice, control; n = 6 mice). f. For DLS lesions and controls, proportion of port-to-port transition errors in the 3 sessions before and 
3 sessions after injection surgery (p = 0.004, paired t-test). g. Average (mean) transition histograms before and after injection surgery. h. Average (mean) 
percentage port poke occurrences for all animals in control (left semi-circles) and DLS lesion (right semi-circles) groups for the 3 sessions after injection 
surgery (grey numbers are SEM). i. Left: schematic showing experimental design for muscimol infusions (bilateral). Right: port-to-port transition error 
rates for baseline sessions, saline infusions and muscimol infusions (ANOVA; p = 1.0e-5, Tukey HSD; p = 0.0018).  
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Extended Data Figure 4: Blocking offline plasticity in the DLS impairs late stabilisation of procedural memory.  

a. Left and right hemisphere cannula tip positions in Allen reference atlas coordinates. left to right: Sagittal view, top-down view, and coronal sections. 
b. Number of sessions since minimum level was last seen for AP5 infusions experiments that resulted in negative trial changes. c. Left: example training 
level progression for fully trained animals given consecutive infusions (infusions points marked by stars, sessions are marked by grey vertical lines, shaded 
regions are test sessions – 24 hours post infusion). Right: cumulative levels dropped across the four consecutive infusion days for each animal. d. Summary 
plot showing total levels decreased for each infusion type (AP5 & saline) after 4 days of consecutive post session infusion (p = 0.024, MannWhitney U, n 
= 6 mice). 
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Extended Data Figure 5: Unsupervised labelling of neural sequences during task activity.  

a. Schematic diagram outlining unsupervised detection and labelling of latent neural structure from raw spikes by PP-Seq. The model takes raw spikes, 
infers latent causal events which can explain repeating sequential structures within the data, then labels spikes which contribute to those events 
parametrised by three features of neural firing; offset, amplitude and width. b. Left: relative sequence incidence curves across standardised task space 
for an example recording session. Grey lines indicate respective task port locations across standardised space. Curves are flattened into representation 
of sequence incidence across task space. Colours are defined by sequences that dominate on average. A hidden (non-dominant) task relevant sequence is 
represented by the star. Right: same as described for left but circularised for all recordings. c. Percentage of non-task related sequences which were 
identified as related to grooming or some other feature of behaviour. (n = 8 mice, n = 19 sessions). 
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Extended Data Figure 6: PP-Seq model hyperparameter selection.  

a. Histogram showing loss values for every combination of hyperparameters (models) tested in the grid search. The chosen model is indicated by the red 
line. Chosen model was hand selected from the top 20 models based on qualitative scoring of the spike labelling output b. Loss values and error (SEM) 
for the top 50 models from the search, chosen model is showing in red). c. Loss values as a function of hyperparameter value for each varied parameter. 
Error bars are SEM loss for models in which the parameter of interest was fixed and the other 5 variable hyperparameters were swept across the full 
range of tested values. Red arrows show the value chosen. 
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Extended Data Figure 7: Unsupervised replay detection outperforms a state-of-the-art decoding approach on ground truth data. 

a. Average (median) replay rate per minute during sleep epochs and for shuffled data (neuron ID permuted) (For shuffle: zero false positives in 20 out 
25 sessions, median rate per minute was = 0, mean = 0.18). b. Left: raster plot showing striatal neural activity during task execution. Blue highlighted 
region is an example of spiking during a single task trial. Middle: Top linearised trajectory of the task. Shading shows the posterior likelihood (white = 
0, darker = more likely) across all linearised spatial bins (average in orange) Right: decoded 2D trajectory of a single trial activity, each square 
corresponds to the weighted average posterior probability across 2D space projected to an average trajectory of the task. c. Schematic showing production 
of ground truth ‘synthetic replay’. Time periods containing PP-seq identified neural sequences were extracted and pseudo-randomly implanted into spike 
matched shuffled data (neuron ID’s permuted). d. False positive rates (events detected per minute in background noise) for PP-Seq and the decoders 
(Kruskal-Wallis; p = 0.00652. post-hoc Dunn test; p = 0.0281, p = 0.0). e. Round markers: percentage of normal and reverse implanted sequences that 
were correctly identified by PP-Seq and the decoders (Unmodified, Kruskal-Wallis; p < 0.0001. Left to right, post-hoc Dunn test; p = 0.0281, p < 0.0001. 
Reversed, Kruskal-Wallis; p < 0.0001. Left to right, post-hoc Dunn test; p = 0.0416, p < 0.0001). Plus markers: percentage of normal and reverse 
implanted sequences that were identified but mislabelled as the wrong sequence type by PP-Seq and the decoders (Unmodified, Kruskal-Wallis; p = 
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0.00253. post-hoc Dunn test; p = 0.00224. Reversed, Kruskal-Wallis; p = 0.00141. post-hoc Dunn test; p = 0.00138). f. Left: schematic diagram of the 
type of test done: the modification done to each implanted sequence. Right, circles: for different percentage spike drop out, the percentage of sequence 
that were correctly identified by PP-Seq and the decoder (Kruskal-Wallis; p < 0.001, Post-hoc Dunn test; for stars (6 spines) shown left to right, p = 
0.0462, p < 0.001, p < 0.001, p = 0.02971, p < 0.001, p = 0.0417, p < 0.001, p = 0.0347, p < 0.001, p = 0.0150, p < 0.001, p = 0.00476, p < 0.001, p = 
0.00274, p < 0.001, p < 0.001, p < 0.001, p = 0.00114, p < 0.001, p = 0.00501, p < 0.001, p < 0.001. Right, pluses: Sequence percentages that were 
identified but mislabelled as the wrong sequence type by PP-Seq and the decoders (Kruskal-Wallis; p < 0.001, Post-hoc Dunn test; for stars (8 spines) 
shown left to right, p = 0.0247, p = 0.00242, p = 0.00403, p = 0.0258, p = 0.00108, p < 0.001, p = 0.00791, p = 0.00759, p = 0.00857, p = 0.00285, p 
= 0.00671, p = 0.02589, p = 0.0361). g. Same as d, but for percentage background noise added to sequences (Percentage found, circles: Kruskal-Wallis; 
p < 0.001, Post-hoc Dunn test; for stars (6 spines) shown left to right, p = 0.00414, p = 0.0160, p < 0.001, p = 0.0189, p < 0.001, p < 0.001, p < 0.001, 
p < 0.001, p = 0.00718. Percentage mislabelled, pluses: Kruskal-Wallis; p < 0.001, Post-hoc Dunn test; for stars (8 spines) shown left to right, p = 
0.0291, p = 0.00841, p = 0.0259). h. Same as d, but for different sequence spike warps (Percentage found, circles: Kruskal-Wallis; p < 0.001, Post-hoc 
Dunn test; for stars (6 spines) shown left to right, p = 0.0403, p < 0.001, p = 0.0201, p < 0.001, p < 0.001, p < 0.001. Percentage mislabelled, pluses: 
Kruskal-Wallis; p < 0.001, Post-hoc Dunn test; for stars (8 spines) shown left to right, p = 0.01767, p = 0.02162, p = 0.02011, p < 0.001). i. Same as d, 
but for percentage disordered spikes (Percentage found, circles: Kruskal-Wallis; p < 0.001, Post-hoc Dunn test; for stars (6 spines) shown left to right, 
p = 0.0406, p < 0.001, p < 0.001, p = 0.0171, p < 0.001, p = 0.0256, p < 0.001, p = 0.0102, p < 0.001, p = 0.0214, p < 0.001, p < 0.001, p < 0.001, p 
< 0.001, p < 0.001, p < 0.001. Percentage mislabelled, pluses: Kruskal-Wallis; p < 0.001, Post-hoc Dunn test; for stars (8 spines) shown left to right, p 
= 0.0235, p = 0.00218, p = 0.0173, p = 0.0237, p < 0.001, p = 0.0271). For plots c-h, for each test value and for each group (PP-Seq and Decoders), n 
= 10 sessions from n = 6 implanted animals.  
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Extended Data Figure 8: Characteristics and decodability of procedural replay in the striatum. 

a. Spectrogram for an example sleep epoch with Delta and Theta band spectral power and average video tracking movement velocity underneath (traces). 
Sleep periods were NMREM or REM periods classified from these metrics (see methods). b. Top: PP-Seq labelled spikes (left) and corresponding PP-seq 
sequence positions observed during task activity projected onto average tracking trajectory (right). Bottom: (left) for the spikes shown above, the decoded 
1D position across linearised task space (red dashed line). Shading shows the posterior likelihood across all spatial bins (white = 0, darker = more likely). 
Maximum of the 1D decoded position (the most probable position) projected onto 2D average tracking trajectory (right). c. Example epoch showing PP-
Seq identified replay events and replays that were also found by the decoder. Perfect matches (green markers), replays with mismatched spatial locations 
(yellow) and PP-seq replay not found by the decoder (red) are shown. d. Percentage of PP-Seq replay events that were also found by the decoder. e. The 
percentage of found events which were spatially harmonious between the two methods. f. Standard deviation of total found percentages between sequence 
types for each session. g. Percentage mismatched and missed sequences for decoded epochs which contained either a single PP-Seq sequence (circle) or 
multiple coactive sequences (square) (n = 6 sessions, n = 6 mice. paired t-test; p = 0.001, p = 0.01). h. Mean relative position of spikes, for neurons in 
each reversed replay sequence observed in an example recording (error bars, SEM). i. Mean relative positions in awake sequences vs. reverse replay 
sequences for all analysed neurons across every session (OLS regression, r = -0.58, p < 0.001). 
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Extended Data Figure 9: Procedural replay is independent of learning stage. 

a. Top: schematic showing implanted neuropixel probe locations projected onto standard Allen atlas coronal (left) and sagittal (right). Bottom: schematic 
diagram showing early learning (before level 50) and late learning (after level 50) recording groups. b. Replay event rate per minute (independent t-test, 
p = 0.235). c. Distribution of warp factors for forwards and backwards replay events (1x represents awake speed).(Differences for all warp factors, 
Kruskal-Wallis; p <0.0001. Paired difference for early and late, forward warp factor groups left to right, post-hoc Dunn test; p = 1.0, p = 0.216, p = 
0.938, p = 0.724, p = 0.323, p = 0.684, p = 0.830, p = 0.596. Paired differences for early and late, reversed warp factor groups left to right, post-hoc 
Dunn test; p = 1.0, p = 0.271, p = 0.818, p = 0.997, p = 0.770, p = 0.590, p = 0.177, p = 0.689). d. Average (mean) single replay event lengths (duration 
from first to last spike) for each recording group (independent t-test, p = 0.995). e. Main: reactivation rates for each analysed sleep epoch against time 
from first sleep onset. (Multivariate comparison between groups, MANOVA; Wilks lambda, p = 0.961) Inset: rate change against starting rate for each 
pair of epochs per session. f. Frequency of single (isolated) and coactive events for each recording session (Differences between all groups, Kruskal-
Wallis; p<0.001. Paired differences between early and late for each group, left to right, post-hoc Dunn test; p = 0.571, p =0.650, p=0.299, p=0.896, 
p=0.961). g.  Mean relative positions in awake sequences vs. reverse replay sequences for all analysed neurons across every session (Multivariate 
comparison between groups, MANOVA; Wilks lambda, p = 0.9756). h. Average (mean) start and end points for all forward (top) and reverse (bottom) 
replay events. Position is relative to the corresponding average awake sequence. (Comparison between all groups, Kruskal-Wallis; p <0.001. Pairwise 
comparison between forward start groups, post-hoc Dunn test; p = 0.876. Pairwise comparison between forward end groups, post-hoc Dunn test; p = 
0.596. Pairwise comparison between reverse start groups, post-hoc Dunn test; p = 0.806). Pairwise comparison between reverse end groups, post-hoc 
Dunn test; p = 0.880). i. Relative frequencies of task ordered and disordered coactive sequences (Early, ordered difference from 62.04%: chance level, 
Wilcoxon signed-rank; p =0.0655. Late, ordered difference from 62.04%: chance level, Wilcoxon signed-rank; p =0.0215. Early, difference between 
subgroups, permutation test: observed difference in means = 70.5%, 99th percentile permuted difference = 51.6%, p < 0.00386. Late, difference between 
subgroups, permutation test: observed difference in means = 50.3%, 99th percentile permuted difference = 29.2%, p < 0.001. Pairwise difference for 
Early and Late ordered sequences, MannWhitney U test; p = 0.259).j. Normalised percentages of task and non-task related replay observed (Pairwise 
difference for early and late task related sequences, MannWhitney U test; p = 0.317). (Early, task related difference from chance level: 50%, one sample 
t-test; p = 0.103. Late, task related difference from chance level: 50%, one sample t-test; p < 0.0001. Early, difference between subgroups, Permutation 
test: observed difference in means = 36.4%, 99th percentile permuted difference = 27.2%, p = 0.0113. Late, difference between subgroups, Permutation 
test: observed difference in means = 21.20%, 99th percentile permuted difference = 15.88%, p = 0.0004. Pairwise difference for Early and Late task 
related sequences; independent t-test, p = 0.317). k. Relative individual neuron involvement frequencies for each sequence during awake task activity and 
sleep periods (Multivariate comparison between groups, MANOVA; Wilks lambda, p = 0.704). (Late: n = 19 sessions, n = 8 mice, Early: n = 5 sessions, 
n = 3 mice).  
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Extended Data Figure 10: Hippocampus lesion extent. 

a.  Left: histology for example NeuN stained coronal slices showing lesion extent across hippocampal volume. Right: corresponding Allen reference atlas 
slices with hippocampal volume highlighted (blue outline). b. Largest (blue shaded) and smallest (green shaded) lesion extent for coronal slices across 
the extent of the hippocampus. c. Percentage of total hippocampal volume lesioned for each animal. Mice that were used in neuropixel recording 
experiments are shown in red. d. Percentage of total hippocampal volume lesioned for each animal across the extent of the hippocampus. Total 
hippocampal volume is shown (grey). Smallest and largest lesions are labelled by blue and green markers respectively. Mice that were used in neuropixel 
recording experiments are shown in red (n = 7 mice).  e. Port-to-port transition errors for expert (trials 4000-5000) mice in lesion and control groups. 
(Independent t-test, p = 0.2251) f. Average (mean) transition port-to-port transition times for expert mice in each group. (Wilcoxon rank sum, p = 0.3597) 
g. Average (mean) percentage port poke occurrences for mice in the lesion group (SEM shown in grey, control n = 6 mice, lesion n = 6 mice).   
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Extended Data Figure 11: Procedural replay characteristics are unchanged by bilateral lesion to the hippocampus. 

a. Replay event rate per minute for lesion and control time epochs (independent t-test p =0.109). b. Relative individual neuron involvement frequencies 
for each sequence during awake task activity and sleep periods (Multivariate comparison between groups, MANOVA; Wilks lambda, p = 0.938). 
(Control: n = 19 sessions, n = 8 mice, lesion: n = 9 sessions, n = 3 mice). 
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