
RatInABox: A unified Python framework for modelling spatial behaviour and neural data

Summary Studying the brain's role in spatial navigation often necessitates creating synthetic
behaviour and/or neural data. Without a common framework, this time consuming process raises
the entry barrier to computational research and makes it difficult to reproduce or compare
research which generates data in different ways. Here we present RatInABox, an open source
Python toolkit for modelling locomotion and synthetic neural data from spatially modulated cell
types. RatInABox provides users with (i) the ability to construct environments with configurable
barriers, holes, visual cues and rewards, (ii) a physically realistic random motion model fitted to
experimental data, (iii) fast online calculation of neural data for most of the known self-location or
velocity selective cell types in the hippocampal formation (including place cells, grid cells,
boundary vector cells, head direction cells etc.) and (iv) a framework for constructing bespoke
complex cell types, multi-layer network models and data- or policy-controlled motion trajectories.
Motion and neural models are spatially and temporally continuous and topographically sensitive
to boundary conditions and walls. RatInABox was built to be intuitive, visual and easy to learn,
supported by a set of diverse and well-documented tutorials. We hope this tool will significantly
streamline computational research into spatial navigation.

Figure 1: RatInABox, a Python toolkit, generates synthetic spatial behaviour and neural data in continuous
environments. (a) By default the agent follows a physically realistic random motion model, fitted to experimental data.
(b) Premade neuron models include the most commonly observed position/velocity selective cells types (5 of many
displayed here). Users can also build more complex cell classes based on these primitives. (c) As the agent explores
the environment, neuron models generate neural data. This can be extracted for downstream analysis or visualised
using in-built plotting functions. (d) Users construct environments by defining boundaries and adding walls/holes and
objects. Three easy-to-make environments, chosen to replicate classic experimental set-ups, are shown.

Details Generating artificial data and building computational models is a crucial part of
neuroscience, particularly for studying spatial navigation. Currently the status quo has
researchers write their own simulation code from scratch, an approach which lacks
standardisation, wastes time, and raises the entry barrier to high-quality computational research.

RatInABox (RiaB, released this year) was built to overcome these issues. Users construct a 1D or
2D environment (Fig. 1d), populate it with one or more agents (Fig. 1a) and endow agents with
neurons encoding their “state” in a rich variety of ways including cell types typically found in the
hippocampal formation[1] (Fig. 1bc). As the agents explore, cells generate associated data which
can be visualised using inbuilt plotting/animation functions and exported for downstream use.

Motion defaults to a smooth random walk, based on continuous-time stochastic processes with
parameters fitted to real rodent locomotion data[2]. We scoured the literature for the most popular
and influential cell models. Cells accept intuitive parameters (e.g. place cell size, grid scale etc.)
with sensible defaults. RiaB currently contains efficient implementations of place cells, grid cells,
head direction cells, velocity cells, speed cells, ego- and allocentric boundary/object/agent vector
cells and random spatially tuned cells, as well as advanced function approximator cell types
discussed below. Efficient protocols mean firing rates are calculated online (not precached)
lowering memory requirements, accelerating simulations and improving accuracy.



In contrast to related packages[3,4] RiaB calculates motion and neural data in continuous time and
space. This upgrade more accurately reflects real-world physics, making simulations smooth and
amenable to fast or dynamic neural processes which are not well accommodated by discretised
motion simulators e.g. grid world, or Markov decision processes.

Figure 2: Advanced functionality transitions RatInABox from a simple data generator into a comprehensive modelling
framework. (a) Users can import their own behavioural data which will be smoothly interpolated enabling
high-resolution simulations from low-resolution data. (b) Movement can be controlled by an external velocity signal.
Here, quiver arrows show direction and magnitude of an exemplar circular drift policy. (c) Egocentric representation –
including what the agent can see in its “field of view” – include those responsive to boundaries, objects and other
agents. (d) Neurons containing a small embedded DNN receive grid cells as inputs and are trained over 300 minutes
of random exploration to learn a non-trivial out function (here, arbitrarily, the letters “riab”). (e) Many features are
combined in a series of RL demos. Here an agent learns a value function (from place cell basis features) and uses it to
control the agent's policy, navigating towards a hidden reward.

From data generator to modelling framework RiaB has many use cases, one being as a
standalone data generator (Fig. 1). Advanced features, some of which are described here,
significantly extend its scope, elevating it into a versatile toolkit for constructing complex models
and aligning the package with the modern direction of NeuroAI research[5].

Motion need not be random: instead users can import external behavioural data or control motion
with a policy signal (Fig. 2ab). Egocentric cells (Fig. 2c) respond to boundaries, objects and
agents in a head-centred reference frame and can be arranged in a “field of view”. In addition to
cells with static firing functions (see Fig. 1b), ‘complex’ cell types contain parameterized and
learnable function approximators, e.g. linear or DNNs as in Fig. 2d, facilitating building cell types
with mixed selective, highly-complex and even dynamic firing functions.

These features allow users to build closed-loop models of how behaviour and representations
mutually interact. We provide a set of demos exploring potential use cases ranging from splitter
cells, neural decoding and path integration, to reinforcement learning (successor features, deep
actor-critic and linear RL). These examples are illustrative, not exhaustive. RiaB provides the
framework and primitive classes/functions from which highly advanced simulations can be built.

A simple and modular API, supported by
numerous tutorials, makes RiaB easy to
learn and use. 10 lines of code are sufficient
to build non-trivial data simulations (Fig. 3).
Being open source and community driven,
with a growing user-base, we hope that new
features ​​will continue to align with current
research trends. The strength of RatInABox
is its simplicity. It is not intended to address
all problems within a specific field (e.g. RL[3])
but serves as a framework to power
modelling more broadly. In this way RiaB
democratises computational neuroscience
and frees scientists to focus on cutting-edge
research rather than software development.

References [1] Barry, C et al. (2014) Neural mechanisms of self-location. [2] Sargolini, F et al. (2006) Conjunctive
Representation of Position, Direction, and Velocity in Entorhinal Cortex. [3] Juliani, A et al. (2022) Neuro-Nav: A Library for
Neurally-Plausible Reinforcement Learning. [4] Domine, C et al. (2023) NeuralPlayground: A Standardised Environment for
Evaluating Models of Hippocampus and Entorhinal Cortex. [5] Zador, A et al. (2023) Catalyzing next-generation Artificial
Intelligence through NeuroAI.


