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Reservoir computing and its application to

unsupervised temporal structure learning

- Temporal Structure

e |t's all around us

- We're great at ledarning it e.g. Dehaene et al. (2015)

- Unsupervised

« Do we learn structure when it isn’t task relevant?e

- Akrami lab experimental results suggest maybe. See also e.g. Saffran et al. (1996)

- Reservoir networks

- Compared to RNNs, cheaper to train and fewer a priori constraints, e.g. Jaeger et al. (2001)

- Architectural parallels to cortex e.g. Szary et al. (2011)



5 key taxonomies of temporal structure

“how does the brain encode temporal sequences of items, such that

this knowledge can be used to retrieve a sequence from memory,
recognize it, anticipate on forthcoming items, and generalize this

knowledge to novel sequences with a similar structure2” — Lashley

(1951)

1. Transition and timing knowledge )J‘J\J‘)J‘J\J\J\J‘J\J‘ ?

2. Chunking gopilagikobatokibutokibugikobagopila

3. Ordinal knowledge 1231 2312312312312 3

4. Algebraic patterns mimitu totobu gagari pesipe pipigo
AAB AAB AAB ABA AAB

5. Nested tree structures generate by symbolic rules

A+ Bsinwt

Dehaene et al. (2015)
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1. A reservoir network model for temporal

structure learning




Reservoir networks are just random RNNs
We train the output weights only

* Random fixed recurrent weights 2 dynamics

TX = —X + WReC : ¢(X) - Wln . I+ ... e.g.noise + feedback

wRee o A (0 L
e~ N0, )

* Trainable linear weights = readout

z = WO . (%)
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Reservoir networks are just random RNNs which can do non-random things




Reservoir networks are just random RNNs which can do non-random things

* Pattern generation: FORCE allowed feedback error during training of w®" via RLS for
pattern generation in, e.g., motor cortex. (Had a huge impact on the field.) Sussillo and Abbott (2009).



Reservoir networks are just random RNNs which can do non-random things

Pattern generation: FORCE learning, Sussillo and Abbott (2009).
Robust timing: reservoir nets as the brain’s ‘stopwatch’, Laje and Buonomano (201 3).

Representations: History dependent mixed-selective representations in PFC, Enel et al. (2016).
Chunking /event segmentation: Asabuki and Fukai (2018).



Reservoir computing with a bucket of water?

A
B XOR Z(t)

Fernando and Sojakka (2003)




Reservoir computing with a bucket of water?

® not XOR
O XOR

A
B XOR Z(t) B

Fernando and Sojakka (2003)




Reservoir computing with a bucket of water?...an Octopus armze!¢!

1. Nonlinearity

2. Dynamic
3. Many degree’s of
freedom

Nakajima et al., (2015)

A
B XOR Z(t)

Fernando and Sojakka (2003)




To first order, cortex is a sparse randomly connected RNN satisfying
these requirements

1. Nonlinearity
N 9 2. Dynamic
?' +O(5 ) 3. Many degree’s of

freedom




Training rule: Two networks, each tries to predict the other

Weights are updated by FORCE

Asabuki and Fukai, (2018)

Strictly, the target f1(t)

= [tanh 22(t)}+
functions are: fy(t) = [tanh 51(t)]+



Training rule: Two networks, each tries to predict the other
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Once trained the reservoirs can act independently
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Asabuki and Fukai, (2018)




Intuition for the
training rule

* It's impossible to
learn a random
trajectory (can do
no better than
predict the mean ®

2z=0)

* It may™ be .
possible to learn ]
the stereotyped
trajectory caused 1
by a recurring

sequence or
‘chunk’

Out

*It's not obvious why it would “want” to learn (notice w;°"" = w,°" = 0 is a valid solution). | have some ideas we could discuss at the end.



Intuition for the
training rule

* It's impossible to
learn a random
trajectory (can do
no better than
predict the mean

2z=0)

* It may™ be
possible to learn
the stereotyped
trajectory caused
by a recurring
sequence or
‘chunk’

Inspiration for the training rule
If you squint, there’s a similarity to cortico-basal ganglia loops

CORTEX STRIATUM
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5 key taxonomies of temporal structure

“how does the brain encode temporal sequences of items, such that
this knowledge can be used to retrieve a sequence from memory,
recognize if, anticipate on forthcoming items, and generalize this
knowledge to novel sequences with a similar structure2” — Lashley

(1951)

1. Transition and timing knowledge D J D J j) ) j) ) D ) j) > ?

2. Chunking gopilagikobatokibutokibugikobagopila

3. Ordinal knowledge 1231231231231 23123

4. Algebraic patterns mimitu totobu gagari pesipe pipigo
AAB AAB AAB ABA AAB

5. Nested tree structures generate by symbolic rules

A 4+ Bsinwt

Dehaene et al. (2015)
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5 key taxonomies of temporal structure

“how does the brain encode temporal sequences of items, such that
this knowledge can be used to retrieve a sequence from memory,
recognize if, anticipate on forthcoming items, and generalize this
knowledge to novel sequences with a similar structure2” — Lashley

(1951)
~/ |1 Transition and timing knowledge D J D J j) ) j) ) D ) j) > ?
« |2 Chunking gopilagikobatokibutokibugikobagopila
? |3 Ordinal knowledge 12812371 281281239%28
X |4 Algebraic patterns mimitu totobu gagari pesipe pipigo
AAB AAB AAB ABA AAB
X 5. Nested tree structures generate by symbolic rules

A 4+ Bsinwt

Dehaene et al. (2015)




2. Chunking, aka ‘event segmentation’
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2. Chunking, aka ‘event segmentation’
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Explanations of chunking
1. Transition probability

Saffran et al. (1996)

2. Temporal community
structure

Schapiro et al. (2013)




Explanations of chunking:
1. Transition probability

Saffran et al. (1996)

2. Temporal community
structure

Schapiro et al. (2013)
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| reduce the
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1. Transition and timing knowledge
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1. Transition and timing knowledge
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1. Transition and timing knowledge
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1. Transition and timing knowledge

AAAA BAAAAB o.zcO 1 . ; : MMR. to B replicates

finding in Strauss et al.

3 (2015).



Explanations of MMR:
1. Stimulus-specific
adaptation

May et al. (2010)

2. Predictive coding

Friston (2005)




Explanations of MMR:
1. Stimulus-specific
adaptation

May et al. (2010)

2. Predictive coding

Friston (2005)

3. (or 2a) Disruption of
otherwise stabilised
recurrent dynamics
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3. Ordinal position

Ramping evidence in favour of chunk gives info on last, but not first, ordinal position

4. Algebraic patterns |’

mimitu totobu gagari pesipe pipigo
AAB AAB AAB ABA AAB

5. Nested tree structure |}

e N

A + B sinwt

.




These tasks require “generalization”

This model isn’t expressive enough to

learn the latent structure required.




Representations reflect temporal community structure... like in the brain

A naive method for chunking: If your ability to predict what’s coming next suddenly falls, it’ probably because
you're at the end of a chunk

i.e. it fails here

Romdom walk

23 -
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Time /s



Representations reflect temporal community structure... like in the brain

THE BRAIN
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Schapiro et al. (2013)

An improved method for chunking: If two events repeatedly occur together in time, learn representations whose
similarity respects this.



Representations reflect temporal community structure... like in the brain

RESERVOIR NETWORK

* Can it chunk the random walk?

* Will the representation respect
7 | temporal community structure...i.e.

3 %
‘ look like the brain?

An improved method for chunking: If two events repeatedly occur together in time, learn representations whose
similarity respects this.



Representations reflect temporal community structure... like in the brain

RESERVOIR NETWORK

w
>
X
~
©
-
o
O
o

7
ol [
B

An improved method for chunking: If two events repeatedly occur together in time, learn representations whose
similarity respects this.



Chunking is improved when the network is forced to engage dynamics
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Chunking is improved when the network is forced to engage dynamics




Chunking is improved when the network is forced to engage dynamics

Encourage dynamics by:

* Increasing sparsity
e Splitting inputs and outputs



Chunking is improved when the network is forced to engage dynamics

Encourage dynamics by:
° Increasing sparsity o

et
e Splitting inputs and outputs _,‘,’;‘;és

Ramon y Caijal (1911)



Summary:

Chunking is improved when

* There is richer dynamics

* The network is forced to

'Y . m om - engage the dynamics | | ' .
o : . This has parallels to cortex s, =, . "

n.b. hyperparameter warning




Roadmap

2. The role of chaos




The role of chaos

Rec g determines dynamics in a self-driven network

WZF;ec ~ _/\/'(O7 i) c g<1= o.nly ’rrqns:ien’r dynarnics |
/N~ * g>1 -2 rich, possibly chaotic, dynamics
X(t) Sompolinksy, 1988

We choose g = 1.5



Unpredictable Neuron 1 FPredictable
trajectory: ™ trajectory ©:

* Input stream is * Input stream is non-
random random

Neuron

2




Unpredictable Neuron 1 Unpredictable
trajectory: ™ trajectory ©:

* Input stream is * Input stream is non-
random random BUT

* Network is chaotic * Network is chaotic

Neuron

2




The role of chaos

Strong inputs, noise and feedback can all suppress chaos.

e.g. Rajan et al. (2010), or Francesca’s work. Intuition is that more external inputs
and less recurrent ‘self-talk’ leads to more stable dynamics



The role of chaos

Strong inputs, noise and feedback can all suppress chaos.

e.g. Rajan et al. (2010), or Francesca’s work. Intuition is that more external inputs
and less recurrent ‘self-talk’ leads to more stable dynamics




Stimulus onset quenches neural variability
&N

va

Churchland...Sahani et al. (2010)



Stimulus onset quenches neural variability...but not indiscriminately
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Stimulus onset quenches neural variability...but not indiscriminately

Plot of neuronal firing rate variance across trials (averaged over neurons)
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Plot of neuronal firing rate variance across trials (averaged over neurons)
0.5

0.4
%

0.3

0.2

0.1

0.0



‘Chunking’ suppresses chaos in the internal dynamics
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l 4. This processed is repeated a
few times
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‘Chunking’ suppresses chaos in the internal dynamics

Evolution of

perturbation size:

Perturbation size
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A copy network is made

A small perturbation applied
to all neurons

Both networks left to evolve
and magnitude of
perturbation is tracked

This processed is repeated a
few times



‘Chunking’ suppresses chaos in the internal dynamics

Evolution of

perturbation size:
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1. A copy network is made

2. A small perturbation applied
to all neurons

3. Both networks left to evolve
and magnitude of
perturbation is tracked

4. This processed is repeated a

few times




Chunks self-stabilise against chaos
The network flip-flops between two states

OUTSIDE CHUNK INSIDE CHUNK
(CHAOTIC STATE) (CHAOTIC STATE)

For an interesting (different) example of dual stable-chaotic networks see Laje and Buonomano (201 3)



Roadmap

3. Experimental results and modelling predictions




We trained people on a distractor task whilst playing them (secretly
structured) tone sequences in the background

. ® «——Predictable tone sequence

Dammy et al., Nature, 202X



We trained people on a distractor task whilst playing them (secretly
structured) tone sequences in the background

! ® «—Predictable tone sequence

Pupil diameter shows chunking-like behaviour

—— 876 trials
06

0.4

0.2
0.0

-0.2

Normalised pupil diameter

-0.4

-0.6

Dammy et al., Nature, 202X _ _ Time /'s



Occasionally we violated the sequence...

® «— Violated tone sequence

—— 876 trials
06

04
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Normalised pupil diameter
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Dammy et al., Nature, 202X Time /'s



Occasionally we violated the sequence...

® < Violated tone sequence

...feved |ing They “qu rned” The structure (even though they weren't instructed to)

—— Normal 876 trials

0.6 ——— Violation 132 trials

0.4

Normalised pupil diameter

Dammy et al., Nature, 202X



We can simulate a similar experiment on the reservoir model

Here we assume the network output is a proxy for pupil diameter
1
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We can simulate a

0.5

04

Network response, zZ

similar experiment on the reservoir model

Network output, z Internal dynamics,

abcd
abc_
ab_d

PC2 8.2% VE

0.05 0.10 0.15 0.20 0.25 -2 0 2 4
Time from start of chunk / s PC112.3% VE



Hallmarks of recurrent processing imparted on pupil data
From quite (left) to very (right) dubious

* The effect is tiny.
* Explained by the chunk self-
stabilizing effect?

o ~0.20

o
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Hallmarks of recurrent processing imparted on pupil data
From quite (left) to very (right) dubious

Pupil variance decreases
sharply after stimulus
onset

-

Pupil Variance




Hallmarks of recurrent processing imparted on pupil data

From quite (left) to very (right) dubious

‘Late’ perturbations have

longer effect as self-
stabilizing effect is turned

off
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4. Conclusions




Conclusions

* Reservoir nets have architectural parallels to the
brain (particularly cortex)

CORTEX STRIATUM
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Conclusions

* Reservoir nets have architectural parallels to the
brain (particularly cortex)

* Can explain basic temporal structure processing
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Conclusions

* Reservoir nets have architectural parallels to the
brain (particularly cortex)

* Can explain basic temporal structure processing

requiring short memory (~100x neuronal . ‘. "
timescale) 4 ;. ‘o
® o ® °
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* Representational similarity to cortex

Left STG



Conclusions

* Reservoir nets have architectural parallels to the
brain (particularly cortex)

* Can explain basic temporal structure processing
requiring short memory (~100x neuronal

timescale) | W

* Representational similarity to cortex

* The network embraces chaos, dynamically
suppressing it with feedback when needed.



Conclusions

* Reservoir nets have architectural parallels to the
brain (particularly cortex)

* Can explain basic temporal structure processing . =

requiring short memory (~100x neuronal

timescale)

Normalised pupil diameter

* Representational similarity to cortex

-0.6

* The network embraces chaos, dynamically - e /s
suppressing it with feedback when needed.

* Hallmarks of recurrent processing are
compatible with experimental data



Future Directions

* Other architectures
* Spiking?




Future Directions

e QOther architectures

* Spiking? . /:’
S Q17
$oen(r (1)

* QOther learning rules

* Minimize information loss e.g. Asabuki et al. (2019) — $%om(u(t)

w* = argmiin f di Dy [ 4™(u (D)l g% (1))

w



Future Directions

* Other architectures
* Spiking?

* QOther learning rules
* Minimize information loss e.g. Asabuki et al. (2019)

* BPTT




Future Directions

* Other architectures
* Spiking?

* QOther learning rules
* Minimize information loss e.g. Asabuki et al. (2019)

* BPTT

e Compare to neuronal data (@QDammy?)
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