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ABSTRACT

Neural activity in the brain is known to encode low-dimensional, time-evolving,
behaviour-related variables. A long-standing goal of neural data analysis has been
to identify these variables and their mapping to neural activity. A productive and
canonical approach has been to simply visualise neural “tuning curves” as a func-
tion of behaviour. In reality, significant discrepancies between behaviour and the
true latent variables—such as an agent thinking of position Y whilst located at
position X—distort and blur the tuning curves, decreasing their interpretability.
To address this, latent variable models propose to learn the latent variable from
data; these are typically expensive, hard to tune, or scale poorly, complicating
their adoption. Here we propose SIMPL (Scalable Iterative Maximization of
Population-coded Latents), an EM-style algorithm which iteratively optimises la-
tent variables and tuning curves. SIMPL is fast, scalable and exploits behaviour
as an initial condition to further improve convergence and identifiability. It can
accurately recover latent variables in spatial and non-spatial tasks. When applied
to a large hippocampal dataset SIMPL converges on smaller, more numerous, and
more uniformly sized place fields than those based on behaviour, suggesting the
brain may encode space with greater resolution than previously thought.

1 INTRODUCTION

Large neural populations in the brain are known to encode low-dimensional, time-evolving latent
variables which are, oftentimes, closely related to behaviour (Afshar et al., 2011; Harvey et al., 2012;
Mante et al., 2013; Carnevale et al., 2015). Coupled with the advent of modern neural recording
techniques (Jun et al., 2017; Wilt et al., 2009) focus has shifted from single-cell studies to the joint
analysis of hundreds of neurons across long time windows, where the goal is to extract latents using
a variety of statistical (Yu et al., 2008a; Cunningham & Yu, 2014; Kobak et al., 2016; Zhao & Park,
2017; Williams et al., 2020) and computational (Van der Maaten & Hinton, 2008; Pandarinath et al.,
2018; Mackevicius et al., 2019) methods.

This paradigm shift is particularly pertinent in mammalian spatial memory and motor systems where
celebrated discoveries have identified cells whose neural activity depends on behavioural variables
such as position (O’Keefe & Dostrovsky, 1971; Hafting et al., 2005), heading direction (Taube
et al., 1990), speed (McNaughton et al., 1983), distance to environmental boundaries/objects (Lever
et al., 2009; Høydal et al., 2019) and limb movement direction(Georgopoulos et al., 1986) through
complex and non-linear tuning curves. Characterising neural activity in terms of behaviour remains
a cornerstone practice in these fields however the implicit assumption supporting it — that the latent
variable encoded by neural activity is and only is the behavioural variable — is increasingly being
called into question (Sanders et al., 2015; Whittington et al., 2020; George et al., 2024b).
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Figure 1: Schematic of SIMPL.(a) A latent variable model (LVM) for spiking data(f i (x ); x (t)) is optimised
by iterating a two-step procedure closely related to the expectation-maximisation: First, tuning curves are �tted
to an initial estimate of the latent trajectory (an “M-step”). The latent is thenredecoded from these tuning cuves
(an “E-step”).(b) SIMPL �ts tuning curves using kernel density estimation (KDE) with a Gaussian kernel (top)
and decodes the latent variables by Kalman-smoothing maximum likelihood estimates.(c) Measured behaviour
is used to initialise the algorithm as it is often closely related to the true generative LVM(d).

The brain is not a passive observer of the world. The same neurons which encode an animal'scurrent
position/behavioural state are also used to plan a future routes (Spiers & Maguire, 2006), predict up-
coming states (Muller & Kubie, 1989; Mehta et al., 1997; Stachenfeld et al., 2017) or recall/“replay”
past positions (Squire et al., 2010; Carr et al., 2011), necesarily causing the encoded latent variables
to deviate from behaviour. Nor is the brain a perfect observer; uncertainty due to limited, noisy or
ambiguous sensory data can lead to similar discrepancies. Measurement inaccuracies can contribute
further. These hypotheses are supported by analyses which show that it is rarely, if ever, possible to
perfectly decode “behaviour” from neural data (Glaser et al., 2020) and the observation that neurons
show high variability under identical behavioural conditions (Fenton & Muller, 1998; Low et al.,
2018). All combined, these facts hint at a richer and more complex internal neural code. When this
is not accounted for tuning curves will be blurred, distorted or mischaracterised relative to their true
form. For example, consider an animal situated at position X `imagining' or `anticipating' a remote
position, Y, for which a place cell is tuned. This might trigger the cell to �re leading to the mistaken
conclusion that the cell has a place �eld at location X.

Nonetheless, the fact that behaviour is often a close-but-imperfect proxy for the true latent motivates
searching for techniques whichexploitthis link. Most existing methods for latent discovery don't ex-
ploit behaviour (Gao et al., 2016; Gondur et al., 2023) at the cost of complexity and interpretability.
Others don't model temporal dynamics(Zhou & Wei, 2020; Schneider et al., 2023; Lawrence, 2003),
don't scale to large datasets (Wang et al., 2005; Nam, 2015; Wu et al., 2017), can't model complex
non-linear tuning curves (Pandarinath et al., 2018; Hurwitz et al., 2021; Duncker et al., 2019; Lin-
derman et al., 2016; Gondur et al., 2023), or aren't designed for spiking datasets(Lawrence, 2003;
Krishnan et al., 2015). Moreover, many of these methods are conceptually complex, lack usable
code implementations, or necessitate GPUs limiting their accessibility.

Contributions Here we introduce SIMPL (Scalable Iterative Maximisation of Population-coded
Latents), a straightforward yet effective enhancement to the current paradigm. Our approach �ts
tuning curves to observed behaviour and re�nes these by iterating a two-step process. First the la-
tent trajectory isdecodedfrom the current tuning curves then, the tuning curves arere�tted based
on this decoded latent trajectory. SIMPL imposes minimal constraints on the tuning curve struc-
ture, scales well to large datasets without relying on neural networks which can be expensive to
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train. Theoretical analysis establises formal connections to expectation-maximisation (EM, Demp-
ster et al. 1977) for a �exible class of generative models. By exploiting behaviour as an initialisation,
SIMPL converges fast and alleviates local minima and identi�ability (Hyvärinen & Pajunen, 1999;
Locatello et al., 2019) issues. This allows it to reliably return re�ned tuning curves and latent vari-
ables which remain close to, but improve upon, their behavioural analogues readily admitting direct
comparison. All in all, SIMPL is able to identify temporally smooth latents and complex tuning
curves related to behaviour, while remaining computationally cheap and natively supporting spiking
data — a distinguishing set of features in the �eld of latent variable models for neural data analysis.

We �rst validate SIMPL on a dataset of synthetically generated 2D grid cells. Next, we apply
SIMPL to rodent electrophysiological hippocampal data (Tanni et al., 2022) and show it modi-
�es the latent space in an incremental but signi�cant way: optimised tuning curves are better at
explaining held-out neural data and contain sharper, more numerous place �elds allowing for a rein-
terpretation of previous experimental results. Finally, we apply SIMPL to somatosensory dataset
for a monkey performing a centre-out reaching task (Chowdhury et al., 2020). SIMPL, with a 4D
latent space, provides a good account of the data with the latent variables initialised to (and remain-
ing correlated with) the monkeys hand-position and hand-velocity. With only two hyperparameters,
SIMPL can be run quickly on large neural datasets1 without requiring a GPU. It outperforms pop-
ular alternative techniques based on neural networks (Schneider et al., 2023; Zhao & Park, 2017)
or Gaussian processes(Lawrence, 2003; Wang et al., 2005) and is over 15� faster. This makes it a
practical alternative to existing tools particularly of interest to navigational or motor-control commu-
nities where abundant data is explained well by measurable behaviours (position, hand dynamics).
We provide an open-source JAX-optimised (Bradbury et al., 2018) implementation of our code2.

2 METHOD

Here we give a high-level description of the SIMPL algorithm. Comprehensive details and a theo-
retical analysis linking SIMPL to expectation-maximisation, are provided in the Appendix.

Algorithm 1 SIMPL: An algorithm for optimizing tuning curves and latents from behaviour

1: s 2 NN � T . Spike count matrix
2: x (0) 2 RD � T . Initial latent estimate e.g. measured position of animal
3: procedure SIMPL(s; x (0) )
4: for e  0 to E do . Loop forE iterations
5: f (e)  FitTuningCurves(x (e) ; s) . The “M-step”
6: x (e+1)  DecodeLatent(f (e) ; s) . The “E-step”
7: end for
8: return x (E +1) ; f (E ) . The optimised latent and tuning curves
9: end procedure

2.1 THE MODEL

SIMPL modelsspike trainsof the form s := ( sti ) i =1 ;:::N
t =1 ;:::T , wheresti represents the number of

spikes emitted by neuroni between time(t � 1) � dt andt � dt. We denotest := ( st 1; : : : ; stN )
the vector of spike counts emitted by all neurons in the t-th time bin. SIMPL posits that such spike
trains s are modulated by alatent, continuously-valued, low-dimensional, time-evolvingvariable
x := ( x t )t =1 ;:::;T 2 RD through the following random process:

x t +1 j x t � N (x t ; � 2
v I ) (Latent dynamics) (1)

sti j x t � Poisson(f i (x t )) (Emission model) (2)

where � v := v � dt and x0 � N (0; � 2
0 I ). This generative model enforces a tunable (through

the velocity hyperparameterv) amount of temporal smoothness in the trajectories. At each time
step the latent variablex t determines the instantaneous �ring rate of all neurons via their intensity

1One-hour recordings of 200 neurons (106 spikes) takes 1 minute to run on a CPU laptop.
2Code and a demo can be found at:https://github.com/TomGeorge1234/SIMPL
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functionsf i (hereon calledtuning curves, collectively denotedf ), which are unknown a priori, and
which SIMPL will estimate. Moreover, we make the common assumption that all neurons are
conditionally independentgivenx t , i.e. p(st jx t ) =

Q
N
i =1 p(sti jx t ). Finally, we assume the latent

variablex is Markovian, a common assumption in the neuroscience literature. This model has been
previously studied in the literature (Smith & Brown, 2003; Macke et al., 2011), albeit using highly
restrictive tuning curve models, something which SIMPL avoids.

2.2 THE SIMPL ALGORITHM

Outline We now seek an estimate of the true, unknown latent trajectoryx? and tuning curvesf ? that
led to an observed spike train,s. SIMPL does so by iterating a two-step procedure closely related to
the expectation-maximisation (EM) algorithm: �rst, tuning curves are �tted to an initial estimate of
the latent variable (the “M-step”), which are then used to decode the latent variable (the “E-step”).
This procedure is then repeated using the new latent trajectory, and so on until convergence.

The M-step In the M-step (or “�tting” step) of thee-th iteration SIMPL �ts intensity functions to
the current latent trajectory estimatex (e) using kernel density estimation (KDE):

f (e)
i (x) :=

P T
t =1 sti k(x; x (e)

t )
P T

t =1 k(x; x (e)
t )

�
# spikes at x
# visits to x

(3)

In practice, we use a Gaussian kernel with small bandwidth� . Being a non-parametric KDE esti-
mator, such a tuning curve model is conceptually simple and free from the optimisation, misspeci-
�cation or interpretability issues of most parametric models. It constitutes a notable departure from
alternatives which use a neural network (Zhou & Wei, 2020; Schneider et al., 2023) to model tuning
curves and is particularly well suited to low-dimensional latent spaces.

The E-step In the E-step SIMPL seeks to infer (or “decode”) a new estimate of the latent from
the spikes and current tuning curves,x (e+1) = Ep(x js;f ( e ) ) [x ]. Directly performing this inference
from the spikes is dif�cult due to the non-linearity and non-Gaussianity of the emission model in
Eq (2). Instead, SIMPL �rst calculates themaximum likelihood estimate(MLE)of x, denotedbx.
Then, by making a linear-Gaussian approximation top(bx t jx t ) � N (x t ; � t ), the variables(x; bx)
form a Linear Gaussian State Space Model (LGSSM) fully characterised by� 2

v I (the transition noise
covariance) and� t (the observation noise covariance). This enables ef�cient inference viaKalman
smoothingof the MLEs in order to approximatex (e+1) = Ep(x jbx ) [x ].

bx (e+1) := arg max
x

logp(sjx ; f (e) )

x (e+1) := Ep(x jbx ( e+1) ) [ x ] � KalmanSmooth(bx (e+1) ; � 2
v I ; � t )

(4)

Crucially, the linear-Gaussian approximation isnot made on the spiking emissionsp(sjx), which is
non-linear and non-Gaussian by design, but onp(bxjx), a quantity which is provably asymptotically
Gaussian in the many-neurons regime (theoretical argument and an explicit formula for� t in B.1).

Behavioural initialisation Spike trains often come alongside behavioural recordingsxb thought
to relate closely to the true latent variablexb � x?. SIMPL leverages this by setting the initial
decoded latent trajectory, to measured behaviourx (0)  xb. We posit thatbehavioural initialisation
will place the �rst iterate of SIMPL within the vicinity of the true trajectory and tuning curves,
accelerating convergence and favouring the true latent and tuning curves(x?; f ?) over alternative
isomorphic pairs(� (x?); f ? � � � 1) whose latent space iswarpedby an invertible map� but which
would explain the data equally well. This amounts to an inductive bias favouring tuning curves close
to those calculated from behaviour. Through ablation studies we con�rm these bene�cial effects.

All in all, SIMPL is interpretable and closely matches common practice in neuroscience (e.g. KDE
curve �tting, MLE-based decoding); moreover, it can be formally related to a generalised version
of the EM-algorithm, for which theoretical guarantees may be obtained. We leave to the appendix
detailed theoretical arguments justifying the validity of SIMPL as well as its connection to EM.
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3 RESULTS

3.1 CONTINUOUS SYNTHETIC DATA: 2D GRID CELLS

First we tested SIMPL on a realistic navigational task by generating a large arti�cial dataset of
spikes from a population ofN = 225 2D grid cells — a type of neuron commonly found in the
medial entorhinal cortex (Hafting et al., 2005) — in a 1 m square environment. All grid cells had a
maximum �ring rate of 10 Hz and were arranged into three discrete modules, 75 cells per module,
of increasing grid scale from 0.3–0.8 m (Fig. 2c). A latent trajectory,x?, was then generated by
simulating an agent moving around the environment for 1 hour under a smooth continuous random
motion model. Data was sampled at a rate of 10 Hz giving a total ofT = 36; 000 time bins (�
800,000 spikes). All data was generated using theRatInABox package (George et al., 2024a).

Figure 2: Results on a synthetic 2D grid cell dataset.(a) Estimated latent trajectories (epochs 0, 1 and 10
shown). Initial conditions are generated from the true latent (black) by the addition of smooth continuous
Gaussian noise.(b) Tuning curve estimates for 5 exemplar grid cells.(c) Ground truth tuning curves.(d)
Performance metrics:Left: log-likelihood of the training and test spikes (averaged per time step, dotted line
shows ceiling performance on a model initialised with the true latent).Middle-left: Euclidean distance between
the true and estimated latent trajectories (averaged per time step).Middle-right: Epoch-to-epoch change in the
tuning curves showing they stabilise over iteration.Right: Cell spatial information. Violin plots, where shown,
give distributions across all neurons.(e)A sweep over the number of cells and the duration of the trajectory.

The initial trajectory,x (0) , was generated by adding smooth Gaussian noise to the latent such that, on
average, the true latent and initial condition differed by 20 cm (Fig. 2a, top panel). This discrepancy
models the agent's internal position uncertainty and/or a measurement error. It suf�ced to obscure
almost all structure from the initial tuning curvesf (0) (x) (Fig. 2b, top). To assess performance
we track to the log-likelihood of training and test spikes (see Appendix C.4 for how we partition
the dataset). We also calculate the error between the true and latent trajectory the epoch-to-epoch
change in the tuning curves and the negative entropy (hereon called “spatial info”) of the normalized
tuning curves as a measure of how spatially informative they are (Fig. 2d).

SIMPL was then run for 10 epochs (total compute time 39.8 CPU-secs on a consumer grade laptop).
The true latent trajectory and receptive �elds were recovered almost perfectly and the log-likelihood
of both train and test spikes rapidly approached the ceiling performance with negligible over�tting.
As expected, SIMPL performs better on larger datasets, Fig. 2e, however performance remains good
even with substantially smaller datasets (e.g. 50 cells for a duration of 5 minutes). We also swept
across the velocity and kernel bandwidth hyperparameters (v; � ) and found SIMPL was surprisingly
robust to changes in these hyperparameters within reasonable limits (see D.2).

Finally, despite having an implicit prior for temporally-smooth latent dynamics, further synthetic
analysis revealed SIMPL is still able recoverdiscontinuouslatent trajectories (for example those
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containing jumpy-like “replay” events, see Appendix D.3) or evendiscrete latents in a non-
dynamical task akin to a discrete two-alternative forced choice task (2AFC, see Appendix D.1).

3.2 HIPPOCAMPAL PLACE CELL DATA

Having con�rmed the ef�cacy of SIMPL on synthetic data, we next tested it on real dataset of
hippocampal neurons recorded from a rat as it foraged in a large environment (Tanni et al., 2022).
This dataset consists ofN = 226 neurons recorded over 2 hours, binned at 5 Hz givingT = 36; 000
data samples and� 700,000 spikes. Many of these cells are place cells (O'Keefe & Dostrovsky,
1971) which, in large environments, are known to have multiple place �elds (Park et al., 2011).

Figure 3: Results on a hippocampal place cell dataset collected by Tanni et al. (2022).(a) Exemplar tuning
curves before and after optimization. Automatically identi�ed place �eld boundaries shown in white.(b)
Log-likelihood of test and train spikes. Control model shown in grey.(c) Statistics analysis of place �elds.
Violin plots show the distributions over all place �elds / cells.(d) The �nal latent trajectory estimated from
SIMPL (green) overlaid on top of the measured position of the animal (used as initial conditions, yellow).(e)
Behavioural discrepancy map: the average discrepancy between the latent and behaviour as a function of the
optimised latentx (10) . Overlaid is a snippet of the behavioural vs optimised true latent trajectory.(f) Place
�eld area as a function of the distance to the nearest wall.

We initialised with the animal's position, as measured by an LED located between its ears, and
optimised for 10 epochs. The log-likelihood of test and train spikes both increased, converging after
4 epochs (Fig. 3b) in a compute time of� 40 CPU-secs. We then analysed the shapes and statistics of
the tuning curves: After optimisation, tuning curves were visibly sharper, Fig. 3a; previously diffuse
place �elds contracted (e.g. the third exemplar tuning curve) or split into multiple, smaller �elds
(second exemplar). Occasionally, new place �elds appeared (fourth exemplar) or multiple place
�elds merged into a single larger �eld (�fth exemplar). Statistically, tuning curves had signi�cantly
more individual place �elds (+19%, mean 1.14! 1.41 per cell,p = 0 :0035Mann Whitney U tests),
substantially higher maximum �ring rates (+45%, median 4.2! 6.1 Hz,p = 9 :8 � 10� 7) and were
more spatially informative (p = 0 :038). Individual place �elds became smaller (-25%, median
0.59! 0.44 m2) and rounder (+8%, median 0.63! 0.68,p = 0 :0037).

To ensure these observed changes weren't merely an artefact of the optimisation procedure we
generated a control dataset by resampling spikes from the behaviour-�tted tuning curves,scon �
p(�jx (0) ; f (0) ). Control spikes thus had very similar temporal statistics and identical tuning curves
to those in the hippocampal dataset but, critically, were generated from a known ground truth model
exactly equal to their initialization. Thus, any changes in the control tuning curves post-SIMPL
must be artefactual. Indeed, no signi�cant changes were observed besides a slightincreasein �eld
area (Fig. 3bc, grey) providing strong evidence the signi�cant changes observed in the real data (e.g.
thedecreasein �eld area) were genuine, re�ecting the true nature of hippocampal tuning curves.

The optimized latent trajectoryx (10) remained highly correlated with behaviour (R2 = 0 :86, Fig.
3d) occasionally diverging for short periods as it “jumped” to and from a new location, as if the
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animal was mentally teleporting itself (an example is visualized in Fig. 3e). We calculated the
difference between the optimised latent and the behaviour at each time point,� t = kx (0)

t � x (10)
t k2,

and visualized this as a heat map overlaid onto the latent space (Fig. 3e). We found that the latent
discrepancy was minimal near the edges of the environment and peaked near the centre, perhaps
because sensory input is scarce in the centre of the environment due to fewer visual and tactile cues.

Tanni et al. (2022) observed that the size of a place �eld size increases with its distance to a
wall. Our observation—that the latent discrepancy is highest in the centre of the environment—
suggests one possible hypothesis: behavioural place �elds merelyappear larger in the centre
of the environment because they are blurred by the correspondingly larger latent discrepancy.
If true, this trend should weaken after optimisation, once the “true” latent has been found.

Figure 4: SIMPL applied to somatosensory cortex data.(a)
A macaque performs centre-out reaches;N = 65 somatosen-
sory neurons are recorded.(b) Log-likelihood curves for the three
SIMPL models in panels c–e.(c) SIMPL trained with a 2D latent
initialised from hand position. Top-left: raw behaviour, averaged
across trials aligned to movement onset; top-right: after SIMPL.
Middle: 40 s of behaviour (yellow) and latent (green). Bottom:
exemplar tuning curves before and after SIMPL.(d) As in c, but
initialised with hand velocity.(e) As in c, but with a 4D latent ini-
tialised to hand-position (dims 1 and 2) and velocity (dims 3 and
4). Inset: 2D visualisation of a 4D latent embedding from CEBRA
trained on hand position, adapted from Schneider et al. (2023).

To test this we plotted �eld size
against distance-to-wall (Fig. 3f); op-
timized �elds, like behavioural �elds,
were small very near to the walls and
grew with distance (replicating the
result of Tanni et al. (2022)), but this
correspondence stopped after� 0:5
m beyond which the optimized place
�elds size grew more weakly with
distance-to-wall. This supports our
hypothesis, suggesting a substantial
fraction of the correlation between
size and distance isn't a fundamental
feature of the neural tuning curves but
an artefactual distortion in the tuning
curves, something which can be cor-
rected for using SIMPL.

3.3 SOMATOSENSORY
CORTEX DATA
DURING A HAND-REACHING TASK

To test SIMPL beyond naviga-
tional/hippocampal datasets we ran
it on a macaque somatosensory cor-
tex dataset Chowdhury et al. (2020).
During this recording a monkey made
a series of reaches to a target in one
of 8 directions, 4. On half of the tri-
als the reach was “active” whereby
the monkey moved the manipulan-
dum towards the target by itself. On
the other half, the reach was “pas-
sive”, whereby the monkey's hand
was bumped in the direction of one of
the targets by a force applied to the
manipulandum, forcing the monkey
to correct and return the cursor to the
centre. We binned the data (N = 65
neurons, 37 mins,� 106 spikes) at 20
Hz and ran SIMPL models on its en-
tirety (i.e. active and passive reaches,
as well as the inter-trial intervals) for
10 epochs.

First SIMPL was run with a 2D latent initialised to the monkeys measured x- and y-hand position
(Fig. 4c). Afterwards, the latent trajectory—here averaged across trials with the same direction,
aligned to movement onset—had diverged from, but remained correlated with, initial hand-position
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(correlation = 0.59). Despite an improvement in likelihood over the behavioural initialisation, latent
trajectories for distinct directions substantially overlapped with one another, indicating an insuf�-
cient dimensionality to capture the full complexity of the data. A similar result was obtained when
initialising to hand-velocity (Fig. 4d).

We then trained SIMPL with a 4D latent space. Two of the dimensions were initialised with hand
position and the other two with hand velocity. This model performed better than either 2D model,
converging to a higher likelihood. The latent dimensions initialised to hand-position remained highly
correlated with hand-position (corr. = 0.74) after optimisation as did the velocity dimensions (corr.
= 0.57). The latent trajectory was also more structured, with distinct and less overlapping motifs
for each trial type. We visualised two-dimensional slices of the four-dimensional tuning curves
for each neuron and found that they had well-de�ned receptive �elds, similar to place �elds in
the hippocampus, which were visibly sharper after optimisation. These results suggest that the
somatosensory cortex neurons encode a complex and high-dimensional latent, closely correlated to
hand position and velocity, which can be partially recovered by SIMPL.

In�uence of behavioural initializations on performance Latent variable models trained with
EM can experience two issues that usually complicate the scienti�c interpretability of their results.
The �rst concerns thequality of the solution; does the algorithm converge on a good model of the
data which predicts the spikes well? The second issue concernsidenti�ability ; even if the recovered
latent trajectory and tuning curves(f (e) ; x (e) ) are of high quality, they may differ from the true ones
(f ?; x?) by some invertible “warp”� in a way that does not affect the overall goodness-of-�t of
the model. These warps could include innocuous rotations and symmteries or, more concerningly
if the exact structure of the tuning curve is a quantity of interest, stretches or fragmentations. Here
we show that behavioural initialisation drastically minimises the severity of both of these issues for
SIMPL.

Figure 5: Latent manifold analysis:(Top) Examplar tuning curve in(a) the ground truth latent space,(b) the
latent space discovered by behaviourally-initialised-SIMPL after 0, 1 and 10 epochs and(c) the latent space
discovered by SIMPL initialised with a random latent trajectory. Inset scatter plots show the true and predicted
�ring rates of all neurons across all times as well as their correlation values (“accurate” models have higher
correlations).(Bottom) The warp mappings from each latent space to the “closest” location in ground truth as
measured by the distance between the tuning curves population vectors.

To do so, we �rst assess the absolute goodness-of-�t of SIMPL by computing for all neurons
the correlation between the estimated instantaneous �ring ratesf ( e )

i (x ( e )
t ) (a quantity invariant to

warping) and the true �ring ratesf ?
i (x?

t ). Our analysis shows that SIMPL converges to a highly
accurate model (r=0.98) under behavioural initialization, but to a less accurate, though still quite
accurate, model (r = 0 :87) when initialised with a random trajectory uncorrelated to the true
latent. Next, we estimate, quantify and visualize the warp map� between SIMPL's estimates
(f (e) ; x (e) ) and the ground truth (f ?; x?). We obtain this estimate by �nding, for every location
in the warped space, which position in the true latent space the tuning curves are most similar
(� (x) = arg min y kf ?(y ) � f (e) (x)k2). We then quantify the “warpness” of this mapping as the av-
erage distance betweenx and� (x) across the environment, normalized by its characteristic length
scale (1 m). This warp-distance should be 0 for totally un-warped models andO(1) for heavily
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warps. We �nd that in addition to perfectly �tting the data, the solution found by SIMPL under
behavioural initialization is minimally warped (warp dist = 0.050). In contrast, the good (but im-
perfect) solution found by SIMPL under random initialization is very heavily warped (warp dist. =
0.498) in a fragmented manner. These results are shown in Fig. 5 and strongly motivate the use of
behavioural initializations in latent variable models as an effective means to encourage convergence
towards latent spaces which are both accurate and un-warped with respect to the ground truth.

Figure 6: Comparison to pi-VAE, CEBRA, GPLVM and
GPDM on the synthetic grid cell dataset.(a) Total compute
time. (b) Final error in the latent.(c) Alignment of the dis-
covered latent to the ground truth.(d) Exemplar tuning curves
constructed using KDE on the latent (i.e. an “M-step”).

Benchmarking SIMPL against exist-
ing techniques We compared SIMPL
to four popular methods for latent vari-
able extraction: pi-VAE(Zhou & Wei,
2020), CEBRA(Schneider et al., 2023)
(which use neural network function ap-
proximators), GPLVM(Lawrence, 2003)
and GPDM(Wang et al., 2005) (which
use Gaussian processes). Crucially, and
like SIMPL, none of these methods make
restrictive linear assumptions about the
structure of the tuning curves.

To match SIMPL, we initialise the latent
variable estimates of GPLVM and GPDM
to behaviour (pi-VAE and CEBRA handle
behaviour natively by using it to condition
a prior over the latent or as a contrastive
label). All models were trained for their
default number of iterations/epochs.

After training we aligned the discovered
latents to behaviour and visualised them on
top of the ground truth (Fig. 6c). All mod-
els successfully uncovered a latent trajectory closer to the ground truth than behaviour (Fig. 6b).
SIMPL performed better than the other models, achieving a �nal error of 4.2 cm, half that of pi-
VAE (8.4 cm). We posit that pi-VAE, CEBRA and GPLVM may suffer from the lack of an ex-
plicit dynamical systems component in their generative models while GPDM may suffer from the
data-subsampling we were required to do to cap the training time to less than two-hours. SIMPL
converged in 40 seconds, over 15 times quicker than the next fastest (pi-VAE, 10.4 minutes, Fig.
6a). Except for GPDM, which required a GPU, all techniques were run and timed on a CPU. Only
SIMPL was able to recover sharp and accurate grid �elds close to the ground truth.

4 RELATED WORK

Probabilistic inference in neural data modulated by latent variables has been a major topic of study
for decades — see, e.g. Tipping & Bishop (1999); Yu et al. (2006; 2008b;a); Macke et al. (2011);
Mangion et al. (2011); Park et al. (2015); Gao et al. (2016); Hernandez et al. (2018); Dong et al.
(2020); Zhou & Wei (2020); Gondur et al. (2023) — however not all methods were designed for the
kind of data considered in this work. Many methods contain model complex latent space dynamics
but combine these with simplistic tuning curves which restrict �ring rates to (exponential-)linear
functions of the latent (Smith & Brown, 2003; Yu et al., 2008a; Macke et al., 2011; Duncker et al.,
2019; Linderman et al., 2016; Pandarinath et al., 2018; Zoltowski et al., 2020; Sani et al., 2021;
Hurwitz et al., 2021; Kim et al., 2021; Gondur et al., 2023) so cannot interpretably account for the
representations (place cells, grid cells) considered here. Other methods do not/cannot use behaviour
to aid latent discovery (Gao et al., 2016; Nam, 2015; Hernandez et al., 2018; Gondur et al., 2023)
instead taking a fully “unsupervised” approach (meaning they can be applied to spike data without
an obvious behavioural correlate) at the expense of complexity and identi�ability.

Algorithms that both don't restrict to simplistic linear tuning curves and exploit behaviour form a
small set of relevant alternatives to SIMPL. Behaviour-informed latent discovery tools have become

9


