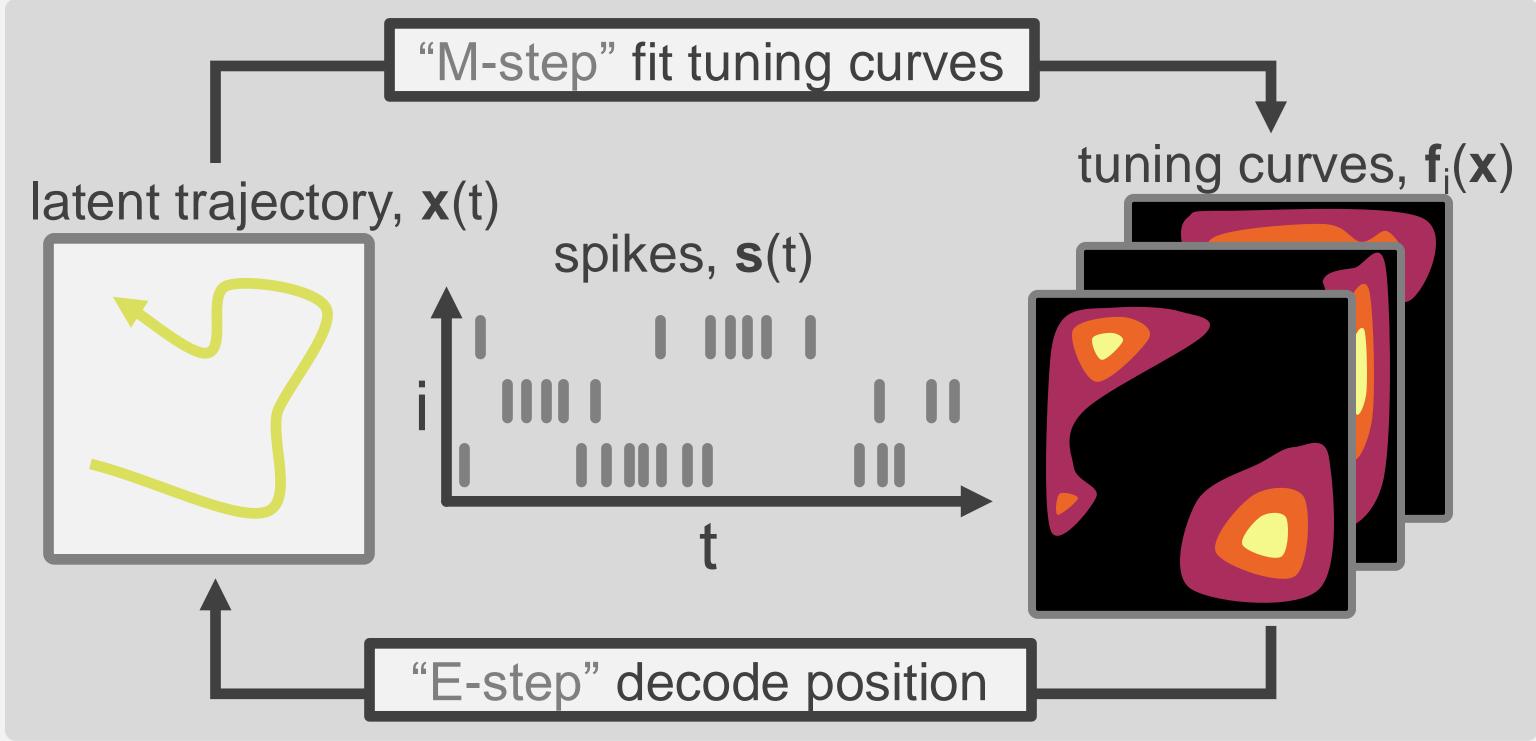
Repeated decoding optimises neural representations and is a <u>SIMPL</u> approach to finding latent variables in spiking data Tom George¹, Pierre Glaser², Kimberly Stachenfeld^{3,4}, Caswell Barry⁵, Claudia Clopath^{1,6}

¹Sainsbury Wellcome Centre, UCL, London; tom.george.20@ucl.ac.uk ²Gatsby, UCL, London ³Columbia University ⁴Google DeepMind ⁵CDB, UCL ⁶Imperial College London

1. ONE PROBLEM, TWO APPROACHES: A DICHOTOMY FOR NEURAL DATA ANALYSIS

Neuroscientists seek effective* methods to explain high-dimensional neural data:

- **1. Tuning curves** fit spikes to behaviour^{**} (e.g. place cells). This is easy and can work well, but misses information (e.g. if the animal isn't thinking of its current position***)
- 2. Latent Variable Models (LVMs) don't limit you to behaviour but are often hard to optimise, finnicky to tune, difficult to interpret or expensive to scale.



SIMPL is a hybrid technique: Inspired by expectation-maximisation^[1] it fits tuning curves to behaviour (the "initial" latent estimate) and optimises them by iteratively decoding the latent and refitting the curves. This is:

- *Theory-backed:* decoding = an "E-step" and fitting = an "M-step"
- Straightforward: Uses common fitting and decoding techniques.
- *Cheap/Scalable*: Large datasets 200 cells, 1 hour, 10⁶ spikes in 1 CPU-min.
- *Interpretable*: Latent can be compared directly to behaviour, in the same units.

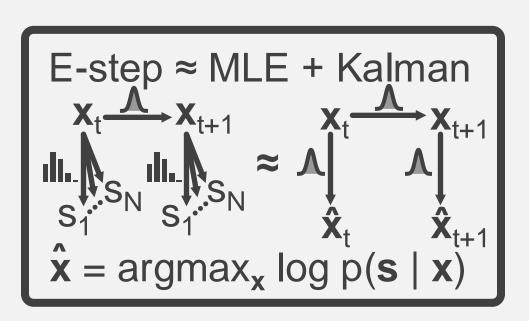
Scalable I terative Maximsation of **P**opulation-coded Latents

*fast, scalable, interpretable, identifiable and performant. **or stimulus, basically any available low-dimensional variable. ***replay, uncertainty, planning, offline states, sleep, consolidation etc. are all common examples

iterations M-step ≈ spike smoothing -likelihoo 00 iterations

more uniform

[schematic]

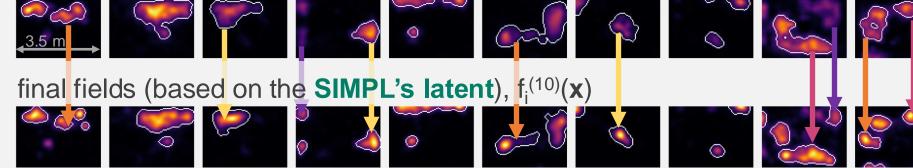


2.1 SYNTHETIC GRIDS (DATASET 1) latent trajectory, $\mathbf{x}^{(e)}(t)$

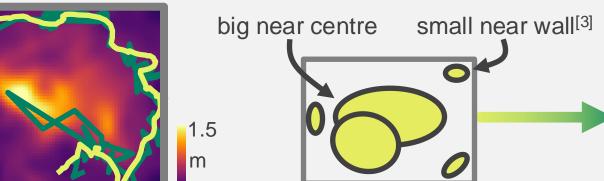
We simulate^[2] grid cells for an agent *uncertain* of its own position where the animal is where the animal thinks it is This discrepancy, δ , blurs grid structure. Can SIMPL recover it? true tuning curves

2.2 HIPPOCAMPUS (DATASET 2)

We ran SIMPL on a <u>real place cell dataset^[3]</u>. initial place fields (based on the animal's position), $f_i^{(0)}(\mathbf{x})$

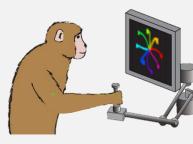


Optimised fields were similar to, but accounted for *more* variance than, those based on the animal's position. They had 19% more fields that were smaller, fired 45% faster and were less noisy.

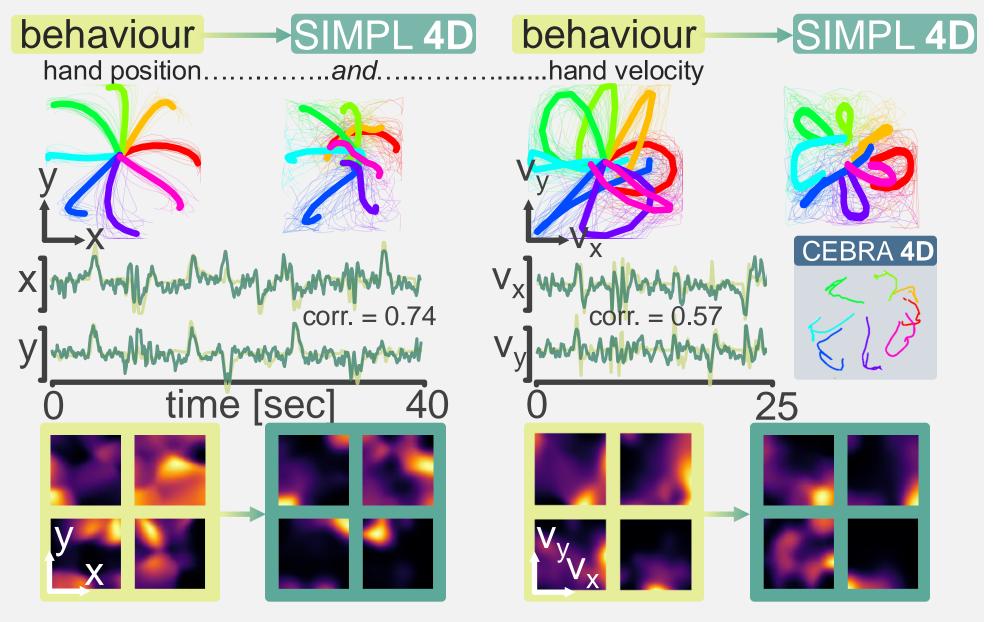


2.3 MOTOR CONTROL (DATASET 3)

Somatosensory spikes for a motor task^[4]. **Run SIMPL with 4D latent:** $\mathbf{x}^{(0)} = [\mathbf{x}, \mathbf{y}, \mathbf{v}_{\mathbf{x}}, \mathbf{v}_{\mathbf{y}}]$ Latent reveals behaviour-correlated



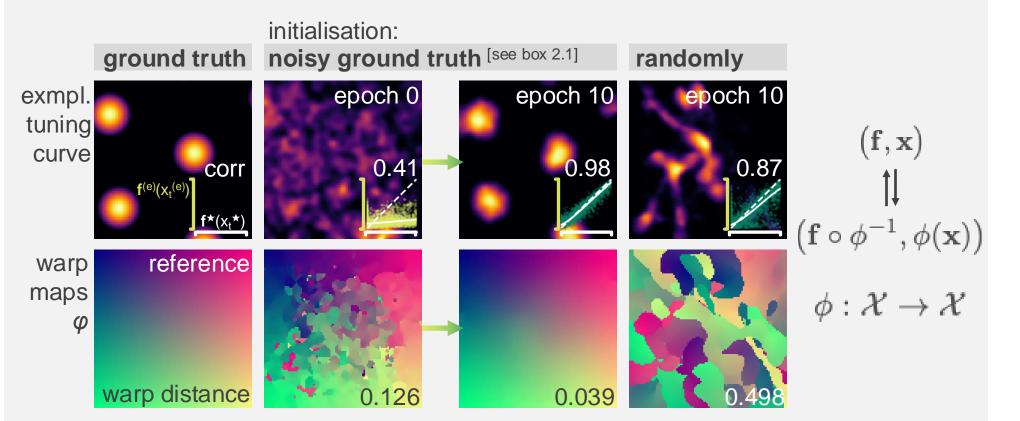
internal dynamics. "Hand fields" tighten substantially.





WHY INITIALISE AT BEHAVIOUR? 3.

Identifiablity: equivalent *isomorphic* solutions can explain data equally well but manifest very differently.



Behavioural initialisation gives the same solution which is unwarped wrt. the ground truth (φ =I), every time.

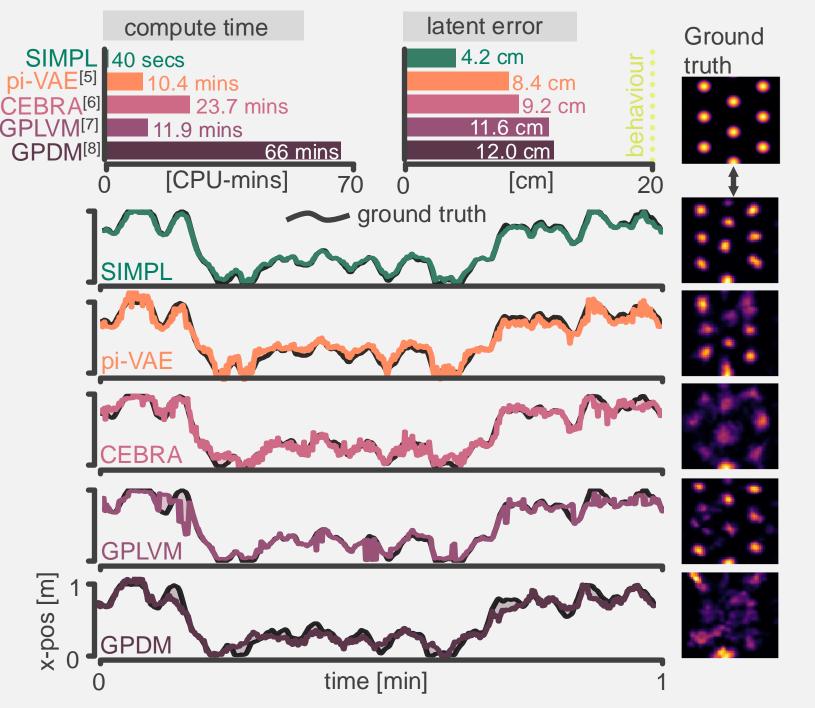
Convergence: For many neural codes behaviour is a close approximation to the latent. It's foolish *not* to start there.

heatmap shows av. diff. between latent and position

SIMPL's latent tracked position closely but exposed biased discrepancies between latent and position.

4. COMPARISONS AND BENCHMARKS

On the synthetic dataset SIMPL finds latents faster and better than other NN or GP techniques.



SIMPL satisfies a unique set of desiderata:

S	Scaling issues					Neural networks		
	-GPLVM (2017)	No dynamics						
			Can't exploit beh					
	Non-spi	iking						
	GPDM Wang (2005)		UMAP t-SNE McInnes (2020) Maaten (2008)				CEBRA Schneider et al. (2020)	
Ι		GPLVM Lawrence (2005)	M-GPLVM Jensen (2020)		MIND Low (2018)		pi-VAE Zhou et al. (2020)	
L	Linear-type tuning curves							
		dPCA Kobak (2016)	PCA / pPCA Pearson (1901)					
	Sani (2021) Li	SLDS inderman (2016) JPSLDS	Kalman filter Kalman (1960) GP-SDEs GPFA					
L	Н	u (2024)	Duncker (2019) Yu (2008)				LFADS Pandarinath (2018)	
	PLNDE S im (2021) Zo	Dltowski (2020)	PLDS Macke (2011)	PGPFA Nam (2015)		MMGPVAE Gondur (2023)		
	SIM George		VIND Hernandez (2018)			PfLDS Gao et al. (2016) DKF Krishnan (2015)		

Furthermore, existing methods are also often **complicated**, lack useable code or require GPUs creating a barrier to their adoption. Pragmatism matters.

5. CONCLUSIONS

References: [1] Dempster et al. (1977), Maximum likelihood from incomplete data via

- **1. Tuning curves are fast and interpretable** but misleading whenever behaviour \approx latent.
- **2.** LVMs correct for this at the cost of interpretability, identifiability and complexity.
- **3.** SIMPL blends these approaches. It is simple, theoretically justified, performant.
- 4. SIMPL works across domains including spatial and motor datasets.
- 5. SIMPL outperforms other techniques at a fraction of the cost.
- 6. Behavioural initialisation is a neat trick for identifiability and improved optimization.

the EM algorithm. [2] George et al. (2024), RatInABox, a toolkit for modelling locomotion and neuronal activity in continuous environments. [3] Tanni et al. (2022), State transitions in the statistically stable place cell population correspond to rate of perceptual change. [4] Chowdhury et al. (2020), Area 2 of primary somatosensory cortex encodes kinematics of the whole arm. [5] Zhou et al. (2020), Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-vae. [6] Schneider and Lee et al. (2023), Learnable latent embeddings for joint behavioural and neural analysis. [7] Lawrence (2003), Gaussian process latent variable models for visualisation of high dimensional data. [8] Wang et al. (2005), Gaussian process dynamical models.

GATSBY COLUMBIA UNIVERSITY

