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2.3  MOTOR CONTROL (DATASET 3)

Somatosensory spikes for a motor task[4].

Run SIMPL with 4D latent: x(0)=[x,y,vx,vy]

Latent reveals behaviour-correlated 

internal dynamics. “Hand fields” tighten substantially.  
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We ran SIMPL on a real place cell dataset[3]. 

Optimised fields were similar to, but accounted for 

more variance than, those based on the animal’s 

position. They had 19% more fields that were 25% 

smaller, fired 45% faster and were less noisy. 

SIMPL’s latent tracked position closely but exposed 

biased discrepancies between latent and position.

heatmap shows av. diff. between latent and position
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References: [1] Dempster et al. (1977), Maximum likelihood from incomplete data via 

the EM algorithm. [2] George et al. (2024), RatInABox, a toolkit for modelling locomotion 

and neuronal activity in continuous environments. [3] Tanni et al. (2022), State 

transitions in the statistically stable place cell population correspond to rate of perceptual 

change. [4] Chowdhury et al. (2020), Area 2 of primary somatosensory cortex encodes 

kinematics of the whole arm. [5] Zhou et al. (2020), Learning identifiable and 

interpretable latent models of high-dimensional neural activity using pi-vae. [6] 

Schneider and Lee et al. (2023), Learnable latent embeddings for joint behavioural and 

neural analysis. [7] Lawrence (2003), Gaussian process latent variable models for 

visualisation of high dimensional data. [8] Wang et al. (2005), Gaussian process 

dynamical models.

1. ONE PROBLEM, TWO APPROACHES: A DICHOTOMY FOR NEURAL DATA ANALYSIS
Neuroscientists seek effective* methods to explain high-dimensional neural data:

1. Tuning curves fit spikes to behaviour** (e.g. place cells). This is easy and can work 

well, but misses information (e.g. if the animal isn’t thinking of its current position***)

2. Latent Variable Models (LVMs) don’t limit you to behaviour but are often hard to 

optimise, finnicky to tune, difficult to interpret or expensive to scale.

SIMPL is a hybrid technique: Inspired by expectation-maximisation[1] it fits 

tuning curves to behaviour (the “initial” latent estimate) and optimises them by 

iteratively decoding the latent and refitting the curves. This is: 

• Theory-backed: decoding = an “E-step” and fitting = an “M-step”

• Straightforward: Uses common fitting and decoding techniques. 

• Cheap/Scalable: Large datasets－200 cells, 1 hour, 106 spikes－in 1 CPU-min.

• Interpretable: Latent can be compared directly to behaviour, in the same units. 

*fast, scalable, interpretable, identifiable and performant.    **or stimulus, basically any available low-dimensional variable.    
***replay, uncertainty, planning, offline states, sleep, consolidation etc. are all common examples
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SIMPL satisfies a unique set of desiderata: 

No dynamics

Can’t exploit behaviour
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Scaling issues

Non-spiking

SIMPL
George (2025)

Furthermore, existing methods are also often complicated, 

lack useable code or require GPUs creating a barrier to 

their adoption. Pragmatism matters.

Linear-type tuning curves

4.  COMPARISONS AND BENCHMARKS

On the synthetic dataset SIMPL finds latents 

faster and better than other NN or GP techniques.
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2.2  HIPPOCAMPUS (DATASET 2)

[schematic]

more uniform big near centre small near wall[3]

2.1  SYNTHETIC GRIDS (DATASET 1)
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We simulate[2] grid cells for an 

agent uncertain of its own position

where the animal is

≉
where the animal thinks it is

This discrepancy, δ, blurs grid 

structure. Can SIMPL recover it? 

5.  CONCLUSIONS
1. Tuning curves are fast and interpretable but misleading whenever behaviour ≉ latent.

2. LVMs correct for this at the cost of interpretability, identifiability and complexity. 

3. SIMPL blends these approaches. It is simple, theoretically justified, performant.

4. SIMPL works across domains including spatial and motor datasets.

5. SIMPL outperforms other techniques at a fraction of the cost.

6. Behavioural initialisation is a neat trick for identifiability and improved optimization.

3.  WHY INITIALISE AT BEHAVIOUR?
Identifiablity: equivalent isomorphic solutions can 

explain data equally well but manifest very differently.

Convergence: For many neural codes behaviour is a 

close approximation to the latent. It’s foolish not to 

start there.

Behavioural initialisation gives the same solution which 

is unwarped wrt. the ground truth (φ=I), every time.
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