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Deep learning to infer eddy heat fluxes from sea
surface height patterns of mesoscale turbulence
Tom M. George1,2, Georgy E. Manucharyan1,3✉ & Andrew F. Thompson1

Mesoscale eddies have strong signatures in sea surface height (SSH) anomalies that are

measured globally through satellite altimetry. However, monitoring the transport of heat

associated with these eddies and its impact on the global ocean circulation remains difficult

as it requires simultaneous observations of upper-ocean velocity fields and interior tem-

perature and density properties. Here we demonstrate that for quasigeostrophic baroclinic

turbulence the eddy patterns in SSH snapshots alone contain sufficient information to esti-

mate the eddy heat fluxes. We use simulations of baroclinic turbulence for the supervised

learning of a deep Convolutional Neural Network (CNN) to predict up to 64% of eddy heat

flux variance. CNNs also significantly outperform other conventional data-driven techniques.

Our results suggest that deep CNNs could provide an effective pathway towards an opera-

tional monitoring of eddy heat fluxes using satellite altimetry and other remote sensing

products.
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Energetic, vertically sheared ocean flows, e.g. the Gulf Stream,
Kuroshio Current, and Antarctic Circumpolar Current, are
baroclinically unstable1–3, generating mesoscale eddies—

vortices with scales of motion of the order of 10–100 km in the
open ocean4,5. Across most of the ocean, mesoscale eddies make
the largest contribution to the kinetic energy and cumulatively
dominate the transport of tracers across frontal currents6–8,
though other types of currents such as jets and filaments can also
contribute to tracer transport. Surface expressions of mesoscale
eddies are monitored globally by satellite altimeters measuring the
dynamic anomaly of sea surface height (SSH)9, which is pro-
portional to the streamfunction of the surface geostrophic flow.
Nearly three decades of satellite SSH observations have sig-
nificantly advanced our understanding of eddy propagation10,
ocean energetics11–13, and tracer diffusivities14,15.

Eddy heat fluxes or, more generally, eddy buoyancy fluxes play
a fundamental role in eddy-mean flow interactions16. The eddies
significantly influence the background mean flow by converting
available potential energy from the mean currents into eddy
kinetic energy (EKE) energy, with the transfer rate being pro-
portional to the average eddy heat flux17,18. When the eddy field
is spatially heterogeneous, it is only the divergent component of
the eddy heat flux that reflects energy exchanges with the mean
flow while the rotational component balances the advection of the
eddy potential energy (EPE) by the mean flow19. The divergent
component of the eddy heat flux is also crucial when considering
the evolution of the local heat content in the ocean7. Despite their
profound role in ocean circulation, oceanic mesoscale eddies are
not fully resolved in long-term climate projection models due to
current computational limitations20,21 so their impact on larger-
scale circulations and tracer fields must be represented in other
ways. Expressing the eddy tracer fluxes in terms of mean flow
properties is a complex theoretical problem that is yet to be
solved, although practically relevant eddy parameterizations have
been built and are actively being used in ocean models22.

Global monitoring of eddy heat fluxes to test and inform
physically based parameterizations remains a major challenge for
several reasons. Firstly, the eddy flux is difficult to estimate from
sparse observations as it is not a sign-definite quantity and its
regional or temporal average can be an order of magnitude
smaller than its local maxima. Secondly, and more fundamentally,
the dynamics of baroclinic instability depend on interactions
between the upper and lower layers of the ocean1 and hence
direct calculations of eddy heat fluxes require simultaneous
observations of the near-surface horizontal velocity field and the
temperature and velocity fields at eddy scales. While surface
ocean currents can be globally estimated with satellite altimetry,
the ocean interior currents and buoyancy distribution must be
observed with in situ instruments. Regionally, some of the most
ambitious observational projects in recent years have focused on
determining the ocean heat (and volume) fluxes across a fixed
latitude or a cross-current transect, including the RAPID23,
OSNAP24, and cDrake25 programs. Global in situ observations of
subsurface properties, e.g. by ARGO floats26, moorings6, and ship
transects, remain too spatially and/or temporally sparse to resolve
the three-dimensional structure of mesoscale eddies, and thus a
direct evaluation of eddy heat fluxes globally is not possible.

Nonetheless, several techniques have been proposed to esti-
mate the eddy heat fluxes using satellite SSH and surface tem-
perature observations along with in situ ARGO float observations
by fitting the data to idealized models27–30. Other methods also
include data assimilation in primitive equation models31,32 and
parameter estimation via stochastic Kalman-type filters in qua-
sigeostrophic models33. Because of the relative sparseness of
in situ observations, the heat flux estimation techniques must rely
heavily on the global eddy-resolving satellite observations of the

ocean surface to approximately constrain the unobserved (or
poorly observed) subsurface velocity and buoyancy distributions.

Critically, subsurface flows in the ocean are highly correlated
with surface flows, such that the vertical distribution of currents
can be represented with a single empirical orthogonal function
(EOF) capturing over 80% of the variability34. However, the
linearly correlated components of the surface and subsurface
flows contribute no meaningful domain-averaged eddy heat flux
(see “Methods”). An estimation of the eddy heat fluxes requires
an accurate measure of the component of the subsurface flow that
is spatially uncorrelated from the surface flow. Studies reporting
highly skilled reconstructions of mean subsurface flows from
mean surface flows35 or reconstructions of the subsurface flow
from SSH and surface temperature observations36 may, in fact,
only be reflections of their high degree of linear correlation, which
would not ensure the accuracy of a subsequent estimation of the
eddy heat fluxes.

Given the highly nonlinear and chaotic nature of mesoscale
turbulence, no theoretical prediction of the surface–subsurface
relationship for baroclinically unstable flows currently exists and
hence a method for reconstructing heat fluxes from SSH snap-
shots alone has not yet been developed. Nonetheless, considering
the quasigeostrophic (QG) model of eddy formation18,37, eddy
heat fluxes emerge from baroclinic instabilities during which the
unobserved bottom flow is affecting, and is affected by, the
observed surface flow. Thus, observed eddy patterns in an SSH
snapshot could significantly constrain the posterior distribution
of subsurface flow and thus contain at least partial information
about the corresponding eddy fluxes. This prompts a natural
question: how much information is contained in the SSH field
with regard to the eddy heat flux estimation?

Here we address this question by considering data-driven
approaches based on deep Artificial Neural Networks (ANNs)38,
which are powerful tools for extracting critical, if subtle, infor-
mation from large volumes of data39–44. ANNs are widely used
for supervised learning tasks where an approximation of an
input-to-output mapping can be iteratively developed by opti-
mizing a highly nonlinear function with respect to a large number
of trainable parameters. Specifically, in fluid mechanics, deep
neural networks have been used to address the closure problem in
Reynolds-averaged Navier–Stokes equations45–47 outperforming
other data-driven methods such as dimensionality-reduction via
proper orthogonal decomposition48 or dynamic mode
decomposition49,50. For geostrophic turbulence37, ANNs and,
more specifically, convolutional neural networks (CNNs) have
been used to demonstrate a strong potential for parameterizations
of eddy momentum fluxes in barotropic46,51 and baroclinic35

ocean gyres. In theory, deep ANNs can approximate nonlinear
mappings of any complexity (see the universal approximation
theorem52,53), provided the network contains a sufficient number
of free parameters, and there exists a sufficient amount of
training data.

In this study, we assess the plausibility of predicting the
instantaneous domain-averaged eddy heat flux by extracting
information only from the SSH patterns of mesoscale eddy field.
Since the variability of large-scale oceanic flows is predominantly
contained in the barotropic and the first baroclinic modes54–57,
our research philosophy here is to use one of the most funda-
mental and influential models of baroclinic turbulence—the two-
layer QG model2. Despite being idealized, the QG model exhibits
nonlinear chaotic behavior and can have symmetry breaking
multiple equilibria58,59. The QG model allows us to estimate the
heat flux predictability limit free from other practical constraints
such as the number of available samples, their spatial sparseness,
measurement inaccuracy, and external noise. We quantify the
limits of the predictive capabilities of SSH data for diagnosing
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eddy heat fluxes by using data-driven approaches (CNNs among
others) trained on large volumes of data from the eddy-resolving
QG simulations. We will demonstrate that CNNs are powerful
tools for extracting the desired information from SSH snapshots
by identifying the spatial patterns containing the most relevant
information for flux predictions. Finally, we will put forward a
hypothesis that there exists an upper bound in the predictability
of eddy heat fluxes based only on SSH snapshots of baroclinic
ocean turbulence.

Results
Eddy heat fluxes in geostrophic turbulence. We conduct idea-
lized numerical simulations of a two-layer quasigeostrophic
model of mesoscale turbulence with a prescribed baroclinically
unstable background flow that is horizontally uniform, vertically
sheared, and kept constant in time (see Methods for model
equations and parameters). The simulations are performed using
spectral methods within a large, 4000 km × 4000 km, doubly
periodic domain containing about 100 Rossby deformation radii
per side. After the initial spinup phase, the baroclinic turbulence
equilibrates and mesoscale eddies become prominent throughout
the domain (Fig. 1a). Cyclonic and anticyclonic eddies are clearly
visible in the SSH snapshots and have pronounced filaments of
potential vorticity at their edges due to the enhanced spatial
structure in the vorticity field (Fig. 1a, b). The dynamical variables
(potential vorticities and streamfunctions) contain signatures of
eddies and filaments that appear to be correlated between the two
layers (Fig. 1b); yet, it is the decorrelated components of the two
streamfunctions that are associated with the eddy heat flux
(Methods). The averaged eddy heat fluxes are directed in such a
way as to induce an overturning circulation that tends to flatten
the tilted thermocline and reduce the magnitude of the mean
shear (Fig. 1c), although in this model the vertically sheared mean
flow is fixed and acts as a perpetual source of energy.

In regions with significant spatial heterogeneity in the EPE
distribution, it is only the divergent component of the eddy heat
flux (as opposed to the rotational component) that is associated
with eddy-mean flow energy exchanges7,19. The divergent and
rotational components of eddy fluxes can be estimated using the
Helmholtz decomposition, with an important caveat that the
decomposition is not unique as it requires specification of a priori
unknown boundary conditions, and even for doubly periodic
domains used in our study, the decomposed fluxes are defined up
to an arbitrary constant. Because our simulations are performed
in a doubly periodic domain with homogeneous background flow,
the distributions of eddy kinetic and potential energy are
statistically homogeneous throughout the domain and the eddy
heat flux contains a significant uniform component in the down-
gradient direction. In the absence of a statistically significant
advection of EPE by the mean flow and by the eddies, the
rotational flux in our simulations is negligible, at least when the
subdomain over which the average is taken is sufficiently large.
Thus, the spatially uniform component of the eddy heat flux in
our simulations should be interpreted as the divergent flux. As
such, we define subdomains (1000 km × 1000 km) within a
doubly periodic simulation domain (Fig. 1a) to build a dataset of
nearly independent eddy field realizations and we estimate the
subdomain-averaged eddy heat fluxes as they directly affect the
evolution of the subdomain EKE (Fig. 1). The subdomain fields
are no longer doubly periodic and hence individual eddies passing
through the boundaries can lead to non-zero instantaneous heat
flux divergences that we also strive to predict with deep learning.

The eddy heat fluxes fluctuate dramatically on monthly
timescales, ranging in magnitude from nearly zero to over double
their mean values (Fig. 1d). The decorrelation timescale for the

heat flux time series,~20 days, is roughly half the period between
SSH snapshots (Fig. 1e), implying that a subtle change in SSH
patterns result in a significant change in the eddy heat flux. The
high sensitivity to SSH patterns reflects the fact that eddy heat
fluxes are proportional to a correlation between surface velocity,
which is directly related to SSH (see Eqs. (3) and (4)), and an
unknown subsurface streamfunction (Eq. (5))—both of which
evolve differently according to a set of strongly nonlinear but
coupled equations (Eqs. (1) and (2)). It is the lack of any explicit
information about either subsurface flow or (equivalently)
thermocline depth anomalies that makes the problem of eddy
heat flux mapping from SSH data mathematically ill-defined.

The subdomain-mean EKE lags the eddy heat flux by about
10 days (Fig. 1e), supporting the notion that the presence of the
down-gradient eddy heat flux during baroclinic instability
enhances EKE through eddy generation. Since the background
mean flow in our model does not change during the EKE and
heat flux fluctuations, it is not possible to express the eddy fluxes
in terms of the mean flow over timescales of months and shorter.
Yet, ocean EKE fluctuations on these timescales are critical for
interior diabatic mixing as well as coupling with surface forcing
from the atmosphere and cryosphere. At these relatively short
timescales, mean flow observations alone are insufficient and we
must search for ways to estimate the time varying components of
the eddy heat flux from the information we have available at eddy
scales. We thus aim to identify the existence of a statistical
relation between the domain-averaged eddy fluxes (panel d) and
the corresponding SSH snapshots (Fig. 2b, top right). Note that
estimating instantaneous eddy fluxes presents a significantly less-
constrained problem compared to the conventional eddy
parameterization problem of reconstructing long-term mean
eddy fluxes, which are indeed expected to depend only on the
mean flow.

Deep CNNs predict eddy heat fluxes from SSH snapshots. Here
we discuss the CNN architecture used in this study and its skill at
predicting instantaneous domain-averaged eddy heat fluxes given
only SSH snapshots. Historically, CNNs have been successful at
solving image/pattern recognition problems for which no analy-
tical solution exists60. Like all “deep” neural networks, CNNs are
built from many simple layers stacked atop one another, not
necessarily in a sequential order. Each convolutional layer filters
the output of the layer before by convolving a small filter matrix
across it, applying a predefined nonlinear activation function, and
performing batch normalization. Both the depth and non-
linearity of the resulting model are key to explaining its
strength. CNN filters are not specified a priori but instead are
optimized using the input/output data until they minimize an
objective error function using some version of a gradient descent
algorithm61.

The moderate complexity CNN architecture, mapping the
input (SSH snapshot) to the output (eddy heat flux), is
conceptually shown in Fig. 2a. It consists of three convolutional
layers followed by two fully connected layers. Each convolutional
layer filters the output from the preceding layer (Fig. 2b, left two
columns) by convolving them with small 4×4 weight matrices
(Fig. 2b, rightmost column). The information extracted in the last
convolutional layer is then passed to a fully connected neural
network consisting of two hidden layers that map to the output.
The output from each set convolutional filter is passed through a
nonlinear activation function62 (ReLU) before being fed to the
next layer. In total, the CNN has O(105) free parameters that are
iteratively updated using a stochastic gradient descent method61

to maximize the flux prediction skill. It takes O(10) iterations
through the training data (aka epochs) of O(105) images to find
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the optimal set of parameters (Fig. 2c). It is essential to ensure
that training and testing data samples are completely independent
of each other to avoid overfitting, which we do by using two
independently noise-seeded numerical simulations.

By optimizing information extraction from SSH snapshots, the
learned filters reflect dynamically relevant features. For example,
the set of filters in the first convolutional layer, fi, can be split into
two representative groups identifying cyclones, e.g. f1, f2, and
anticyclones, e.g. f3, f4, (Fig. 2b, right two columns), while slight
filter differences (f1− f2 and f3− f4) emphasize eddy gradients
and edges, particularly for dipoles (Fig. 2b, middle column). From
linear stability analysis, the eddy heat fluxes should depend on the
relative position and strength of eddies in both layers, with the
magnitude of the flux being particularly strong in baroclinic
dipoles known as hetons63. Thus, it is reassuring that the network
has learned to extract this type of information from SSH

snapshots. In subsequent layers the information becomes too
abstract for interpretation. The average testing skill (defined in
Eq. (6)) achieved by the CNN peaks at 0.36 (Fig. 2c),
corresponding to a relatively high correlation of 0.8 between
the predicted and true eddy fluxes. The CNN is highly efficient at
extracting the required information from SSH patterns, so much
so that it outperforms other tested data-driven methods that
either disregard the two-dimensional nature of SSH data or
attempt to use more simplified linear methods (see Methods).

Despite explaining up to 64% of the eddy heat flux variance
(Fig. 3a, R2= 64% was the maximum achieved value), CNN
predictions have some systematic biases reflecting the funda-
mental limitations of the information contained in SSH snap-
shots. Firstly, extreme values of eddy heat fluxes (over one or two
standard deviations from the mean) are persistently under-
estimated by the CNNs (Fig. 3b, d). This underestimation

Fig. 1 Simulations of baroclinic geostrophic turbulence on a β-plane. a Snapshot of the upper-layer potential vorticity field, q1, showing the prominence of
mesoscale eddies; orange dashed square shows a representative 1000 × 1000 km subdomain. b Subdomain snapshots of potential vorticities qi and
streamfunctions ψi in the upper (i= 1) and lower (i= 2) model layers. Note, the sea surface height (SSH) is proportional to the top layer streamfunction, ψ1.
All variables have been non-dimensionalised such that their extremal pixel has a value of modulus 1. c Cross-sectional schematic of a stratified ocean,
demonstrating the thermocline tilt and corresponding vertically sheared mean flow (for the northern hemisphere); the cumulative impact of all eddies
creates an overturning eddy streamfunction, ψ*, that acts in a direction to flatten the thermocline slopes and decelerate the mean flow. d Temporal
evolution of the subdomain-averaged eddy heat flux HF (it’s negative is plotted with the orange curve) and the domain-averaged eddy kinetic energy EKE
(blue) demonstrating strong fluctuations within the statistically equilibrated mesoscale turbulence on monthly timescale. e Autocorrelation functions for
the eddy heat flux (orange), sea surface height snapshots (green), as well as the lagged correlation between the negative eddy heat flux and the eddy
kinetic energy (blue), with positive lags corresponding to the eddy heat flux preceding the eddy kinetic energy. Note that the eddy fluxes decorrelate almost
twice as fast compared to the sea surface height snapshots and the heat flux is an early predictor of the eddy kinetic energy.
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remained true even when (i) synthetically increasing the number
of training examples with extreme eddy fluxes and (ii) testing
various optimizers (Stochastic Gradient Descent, Adam, Ada-
max64), losses (mean absolute and square error) and weight
regularizations (L1 and L2). This suggests that deficiencies of the
CNN architecture or lack of training data do not explain the
limited skill, but rather this is caused by the inherent
incompleteness of the information contained in SSH snapshots.
Secondly, since the CNN was trained on nearly decorrelated SSH
snapshots separated by 10 days, evaluating its performance on
continuous SSH time series generates elevated variability at
timescales shorter than about 10 days (Fig. 3c). Still, the CNN
generates a skillful and relatively smooth eddy heat flux time
series (Fig. 3d) with similar statistics to the true flux. While
superior network architectures that would eliminate these biases
might exist, it is not evident they could achieve a significantly
higher predictive skill. Indeed, significantly increasing the
number of training samples or the network complexity does
not indicate improvements in the skill (Fig. 3e, f), implying an
underlying limitation of the chosen architectures or a theoretical
(dynamically constrained) upper bound associated with the
information contained in SSH snapshots. Nevertheless, as Fig. 3d
demonstrates, even with the skill of about 0.36, CNNs can
provide valuable information on the eddy heat flux variability on
monthly timescales.

Prediction of eddy heat flux divergence. For complex oceanic
flows, the divergent component of the heat flux, which governs
the energy exchange with the mean flow, can be much smaller
than the total flux due to a large rotational component7. The
divergent component of the flux is commonly calculated from the
eddy heat flux using the Helmholtz decomposition that requires
computing the heat flux divergence (HFD). The HFD is also a
desirable quantity to estimate as it directly affects the evolution of
the local heat content. While the HFD, and hence the divergent
component of the flux, can be calculated after estimating the flux
using deep learning, the associated errors can be large. Thus, an
additional stringent test for the CNNs is to predict the HFD
(instead of the heat flux) directly from the SSH data. Here we
show that CNNs can indeed be trained to learn the heat flux
divergence outright.

We calculate the HFD as an average within an inset region with
boundaries separated from the outer boundaries of the SSH
snapshot by a distance x (Fig. 4a). Similar to the heat flux, the
HFD depends on the lower layer streamfunction and so cannot be
calculated analytically. The same neural network as displayed in
Fig. 2 is trained to estimate the HFD given the corresponding SSH
snapshot. With a boundary inset, x= 200 km, the CNN can learn
to estimate the HFD with an average skill of 0.35 (Fig. 4b). The
number of required epochs as well as the resulting skill are similar
to the task of predicting the heat flux (compare Figs. 4b and 2c).

Fig. 2 The convolutional neural network architecture optimized to predict eddy heat fluxes from sea surface height snapshots. a The architecture
consists of multiple layers that consecutively filter the input, by convolution, with 4×4 weight matrices. The size of the feature maps (green numbers) is
decreased layer-by-layer whilst the number of feature maps (orange numbers) is increased. More and more abstract features of sea surface height
patterns are extracted at each subsequent layer. Finally, the features extracted by the final layer of convolutional neural network are flattened into a vector
and passed into a two-layer fully connected neural network in order to predict the flux. All variables have been non-dimensionalised such that their
extremal pixel has a value of modulus 1. b Example of the outputs from the first convolutional layer after training. The left two columns, fi, show 4 of the 8
first layer feature maps—we discover that they are split into cyclonic and anticyclonic filter groups. Also shown are differences between these feature maps
(third column) as well as the corresponding 4×4 weight matrices (fourth column) which performs this filtering. The triangle/circle markers highlight
example cyclonic/anticyclonic eddy centers. c The evolution of the neural network skill evaluated using the training (blue), testing (orange), and validation
(green) datasets, plotted as a function of training epochs, i.e. the number of times we have iterated through the entire training dataset; the average
validation skill corresponding to the top 100 training skills is shown with dashed gray line.
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We do not observe divergent overfitting over the full training
period of 100 epochs. For small values of x, or when the HFD
boundary is close to the edge of the SSH subdomain, the CNN
struggles to learn the HFD (Fig. 4c). The skill improves once the
boundary inset x is increased, achieving an optimum when x ≈
200 km from the edge of the subdomain (Fig. 4c). The
interpretation is that eddies crossing the boundary of the
divergence region are responsible for the HFD fluctuations and
hence their SSH expressions must be “visible” to the CNN as
input, i.e. the boundary inset x should be larger than a
characteristic eddy size. The CNN skill does not deteriorate as
x increases towards 500 km and the inset region shrinks to a point

(Fig. 4c), implying that point-wise estimation of heat flux
divergence is possible with the same accuracy as for averages
over large domains. Evaluating the performance on an example of
continuous SSH evolution, the trained CNN performs well in
predicting the monthly variability of the heat flux divergence
(Fig. 4d), with large errors apparent only for a few rare cases.

Optimal CNN complexity and required volume of data. To
identify and prevent overfitting, regularization techniques, such
as splitting the data into independent training/validation/testing
sets, applying random dropout to neurons, early stopping of

Fig. 3 Performance of convolutional neural networks in estimating instantaneous domain-averaged eddy heat fluxes from SSH snapshots. Panels
a–d show comparisons between the predictions (dark orange) and the true values (light orange) for various performance diagnostics. a Scatter plot of
predictions for the validation dataset demonstrating that convolutional neural networks explain over 60% of the flux variance (max achieved R2= 0.64).
b Histograms highlighting the prediction biases towards underestimating extreme values of eddy fluxes. c Power spectra highlighting the prediction biases
towards producing noisier time series at frequencies higher than O(0.1 days−1). d Time series showing the fluctuations of the true and predicted eddy heat
fluxes, highlighting the skill and relative temporal smoothness of the prediction as well as its deficiencies on individual events. The eddy heat flux prediction
is plotted for the network state with maximum validation skill (skill metric defined in Methods), corresponding to a test data skill of 0.36. e Sensitivity of the
fully trained convolutional neural network skill on the number of data samples used for training; error bars represent a range in the validation skill
corresponding to the top 100 best training skills. f Prediction skills achieved for a variety of convolutional neural network (CNN) architectures ranging from
simplistic to deep; the number of adjustable parameters is shown on the x-axis as a rough measure of CNN complexity while hyperparameters are referred
to by numbers and described in Methods.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20779-9

6 NATURE COMMUNICATIONS |          (2021) 12:800 | https://doi.org/10.1038/s41467-020-20779-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


training and L2 weight regularizations have been applied during
CNN optimization. For any neural network, insufficient training
data can lead to overfitting and/or skill reduction. Thus the
optimal amount of data necessary to achieve the maximum skill
depends on the network architecture: higher complexity networks
having larger number of trainable parameters can generally
achieve higher prediction skills but require larger volumes of
training data. Specifically, for the CNN architecture used here, we
find that it is necessary to have at least 20,000 SSH images (and
their corresponding eddy heat fluxes) in order for training to
achieve the maximum skill and to avoid significant overfitting
(Fig. 3e). When it comes to using real ocean data to train a neural
network, even though the required number of SSH snapshots may
be available from satellite altimetry databases, a severe lack of
spatially and temporally dense interior ocean measurements
means there is little chance of being able to calculate the corre-
sponding heat fluxes. Simply put, the required number of training
samples is currently too large to make practical progress and
other, more efficient, network architectures must be considered to
reduce this number.

We could not construct a CNN architecture that could
significantly surpass the skill of 0.36, even when a total of
200,000 training samples were used on ultra-deep CNNs trained
intensively on GPUs. Instead, we find that there exists an optimal
CNN complexity for this problem: simpler networks cannot
achieve the highest possible skill, while complex networks
struggle with overfitting and computational cost (Fig. 3f). The
optimal CNN architecture (Fig. 2a) still involves a large number

of trainable parameters, O(105), and hence is likely to be
sufficiently powerful in recovering the physically constrained
dependencies between eddy fluxes and SSH snapshots, were they
to exist. Here, “optimal” refers to the fact that it performed
approximately as well as ultra-deep ResNet CNN (see “Methods”)
trained for O(1000 cpu hours) but required O(1000) times fewer
parameters and only O(1 cpu hour) of training time. The
existence of the upper bound in skill confirms our expectations
that there may be process-based limitations on the information
contained in SSH snapshots with respect to identifying subsurface
flows. Nonetheless, the CNNs explain over 64% of the eddy heat
flux variance, performing substantially better as compared to
other statistical methods including linear regression, principal
component analysis, support vector machines, or random forests
(Fig. 5).

Discussion
Our idealized study provides a proof-of-concept that deep
learning could be used for estimating eddy heat fluxes from
satellite altimetry. By training deep neural networks on synthetic
data from eddy-resolving simulations of baroclinic turbulence, we
showed that the eddy expressions in SSH snapshots contain
sufficient information to estimate instantaneous domain-averaged
eddy heat fluxes and their divergences, accounting for about
64% of their variance. We found that CNNs that explicitly rely
on two-dimensional pattern analysis substantially outperform
other conventional data-driven techniques, including principle

Fig. 4 Performance of the convolutional neural network in predicting the divergence of the eddy heat flux. a An example of an input sea surface
snapshot and the inset region separated by a distance x over which the output is calculated as the inset-averaged divergence of the eddy heat flux;
colorscale and range is the same as in Fig. 1. b The evolution of the training (blue), validation (green), and testing (orange) skills as a function of training
epochs for the case of x = 200 km. The average validation skill corresponding to the top 100 best training skill is shown in gray dashed line. c The
sensitivity of the prediction skill on the proximity (x) of the inset to the boundaries of the sea surface height domain; note that x≈ 500 km corresponds
to point estimate of the eddy heat flux divergence. The error bars represent a range in the validation skill corresponding to the top 100 best training
skills. d Example time series showing the fluctuations of the true (thin orange line) and predicted (thick orange line) heat flux divergence for the case of x =
200 km.
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component analysis, linear regression, random forests, statistical
vector machines, and basic fully connected neural networks. This
suggests that information about subsurface ocean flows may be
linked to the geometric shape of eddies and their relative orien-
tations with respect to each other. For more complex, and thus
more realistic, mean flow configurations, e.g. a meandering jet,
EPE advection will be significant and eddy heat fluxes would be
dominated by the rotational component. In these cases, it will be
important to develop neural networks that can distinguish and
predict the divergent component of the flux.

Tested over a broad range of network architectures, domain
sizes and training dataset volumes, there seems to be an upper
bound to the predictive power of the considered CNN archi-
tectures—an indication that we may have approached a
dynamics-based bound on the information content in SSH
snapshots. The existence of this bound would imply that analy-
tical laws directly derived from the QG equations linking eddy
heat fluxes to SSH snapshots do not exist, otherwise deep neural
networks would have approximated these laws with sufficient
amount of training data. In this case, only data-driven regression
or probabilistic models could be relevant. It is plausible that the
upper bound on the predictive capability of SSH snapshots
obtained from the CNNs used in this study may be surpassed by
other machine learning architectures, e.g. cross-modal CNNs65,
ultra-deep CNNs66, or more novel deep learning architectures.
Thus, the existence of the ultimate dynamics-based upper bound
remains an open question. To encourage the participation of a
broader scientific community in addressing this question, we have
made the training/testing datasets as well as the CNN code
publicly available and we welcome attempts to improve upon the
prediction skill found in this study.

Despite the seeming existence of the upper bound, the perfor-
mance reached by CNNs on the model data is sufficiently high to
potentially provide valuable information on eddy-mean flow
interactions globally for the ocean, if the deep learning technique
could be extended to satellite observations. However, there are
several remaining issues that must be addressed before imple-
menting this approach operationally using satellite SSH

observations. Firstly, even within our controlled numerical experi-
ments that are free of external processes, the amount of training
data necessary for the supervised learning of CNNs is substantial,
O(105) samples. Secondly, our idealized simulations of baroclinic
turbulence were performed with constant mean flow and stratifi-
cation parameters, thus ignoring spatially and temporally non-local
eddy processes that may complicate the CNN learning and require
an even larger volume of training data. Future studies may consider
reconstructing eddy heat fluxes in realistic spatially heterogeneous
mean current flows by training the neural network on examples
from eddy-resolving ocean circulation models. Thirdly, in practice,
directly measuring eddy heat fluxes for supervised learning would
require an eddy-resolving network of ocean instruments such as
ARGO floats, gliders, or moorings that are expensive to sustain on
basin scales and over long periods of time. Thus, it is necessary to
develop superior deep learning techniques, potentially implement-
ing meta-learning strategies67–69, which could reduce the volume of
necessary training data by at least an order of magnitude. Another
way to approach the limitations of obtaining the training data is to
explore the possibility of transfer learning70: here CNNs could be
almost entirely trained on a large volume of synthetic model data
(aka. this study) and afterwards use a much smaller fraction of real
ocean observations for validation and fine-tuning of weights and
biases.

Methods
Numerical simulations of geostrophic turbulence. Baroclinic turbulence was
simulated using the two-layer QG equations with a vertically sheared, horizontal
uniform background mean flow that is kept constant in time: an idealized view of
the baroclinic instability known as the Phillips model2,18. The model assumes
conservation of potential vorticity in both layers with their anomalies from the
mean state, q1,2, defined as

q1 ¼ ∇2ψ1 þ
f 20

g 0H1
ðψ2 � ψ1Þ; q2 ¼ ∇2ψ2 þ

f 20
g 0H2

ðψ1 � ψ2Þ: ð1Þ

The time evolution of potential vorticity anomalies is governed by lateral
advection due to eddies, the mean flow and bottom layer Ekman drag:

∂tqi þ Ui∇qi þ βvi ¼ �rEkδi2∇ψi; i ¼ f1; 2g: ð2Þ
Here ψi is the perturbation streamfunction defined by

ui
vi

� �
¼ �∂yψi

∂xψi

� �
ð3Þ

where u and v are the zonal and meridional components of velocity and rEk
represents the Ekman drag coefficient. Simulations are performed for characteristic
parameters of a midlatitude baroclinic current such as the Gulf Stream or the
Antarctic Circumpolar Current: Coriolis parameter f= f0+ βy (evaluated at 40
degree latitude) and the stratification parameters are chosen to result in a baroclinic
Rossby deformation radius of 40 km. The ratio of the top to bottom layer thickness
is chosen to be 1:5. The background mean flow is uniform and constant in time,
with the vertical shear of U1−U2 = 0.2 m s−1 being sufficiently large to develop
baroclinic instabilities that reinforce generation of strongly interacting mesoscale
eddies equilibrating to be O(200 km) in diameter (Fig. 1a). The model dissipation is
due to the bottom Ekman drag (10 day timescale), while small-scale vorticity
gradients are arrested by a scale-dependent dissipation implemented as a filter in
spectral space that damps high wavenumber energy in all model variables each time
a Fourier transform is used to evaluate tendencies. These specific parameters were
chosen so as to give statistically steady ‘weak β-plane turbulence’ corresponding to
a midlatitude ocean. There is no reason to believe our machine learning method
would not work equally well for other parameter sets, so long as the nature of the
turbulence does not change.

The doubly periodic domain was set to 4000 km in horizontal scale and the model
equations are solved in spectral space using 256 Fourier modes in both directions. The
double-periodicity means the full domain has no overall heat flux divergence.
Furthermore, the 4000 km domain was arduous to train using our CNN technique.
To overcome these issues the doubly periodic full domain was divided into into
16 subdomains, 1000 × 1000 km each; these subdomain SSH snapshots used for
training are no longer doubly periodic and hence the corresponding eddy heat fluxes
do have a divergence contribution due to eddies at the boundaries. In total, 112,000
training data images were obtained from 4 independent simulations, each initialized
with independent noisy initial conditions and summing up to about 3000 years of
model time (spinup data was discarded). Since SSH snapshots decorrelate from
themselves over a timescale of 20 days, the time gap between successive training
snapshots was set to 10 days to avoid redundant data and to be more in line with real

Fig. 5 Performance chart for a set of various data-driven techniques used
to estimate eddy heat fluxes from sea surface height snapshots. The y-
axis represents their obtained skill and each column has a denoted value of
R2 that reflects the fraction of the total eddy flux variance explained by the
fit. The following techniques are shown: Linear Regression, Random Forrest,
Principle Component Analysis (PCA), Support Vector Machine (SVM),
Fully Connected shallow Neural Network (FC NN), Convolutional Neural
Networks with sequential propagation (VGGNet) and with residual
connections (ResNet). The techniques are described in Methods.
Convolutional neural networks (dark blue) significantly outperform other
methods (cyan) as they are optimized to extract the most informative eddy
patterns. Note that the FC NN and VGGNet training time is O(1 cpu hour),
whereas ResNet takes O(1000 cpu hours) to train.
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altimetry data from satellites that have return periods of O(10 days). For training, the
112,000 subdomain snapshots are treated as spatially and nearly temporally
independent examples of typical eddy patterns. 16,000 test data images were produced
from an independently seeded simulation each separated from the next by 1

4 day to
evaluate the smoothness of the obtained CNN mapping. Note we also tried training
the CNN on doubly periodic 1000 km domains and achieved similar results—all other
discussions in this paper relate to training on the 1000 km non-periodic subdomains,
since performance did not substantially decrease and, in practice, having non-periodic
domains would allow us to address the problem in real oceans where domains are not
doubly periodic.

The eddy heat fluxes, HF, are defined as HF ¼ v1h1, where the overline
corresponds to averaging over the subdomain area, v1= ∂xψ1 is the anomalous
surface ocean velocity in the meridional direction perpendicular to the mean flow,
and h1 ¼ ðf 0=g 0Þ � ðψ2 � ψ1Þ is the thermocline depth perturbation. Note that SSH
perturbations are directly related to the surface geostrophic streamfunction as

SSH ¼ f 0
g 0
ψ1; ð4Þ

and hence the eddy heat flux can be split into the ‘trivial’ component that only
depends on the known SSH field and the ‘coupled’ component that depends on the
unknown bottom layer streamfunction:

HF ¼ f 0
g 0
ðψ2 � ψ1Þ∂xψ1 ¼ ψ2∂xSSH|fflfflfflfflffl{zfflfflfflfflffl}

0Coupled flux0

� g 0

f 0
SSH∂xSSH|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0Trivial flux0

: ð5Þ

The ‘trivial’ component of the eddy heat flux exists solely due to eddies passing
through the artificially defined subdomain boundaries and it is identically zero in a
periodic domain. Not only is this component dependent only on the known SSH
field, and hence is trivially calculated, but it is dynamically irrelevant in the sense
that it is a noisy term, highly dependent on the location of subdomain boundaries
rather than on fundamental processes going on inside it. However, given that the
dynamically relevant component of the eddy heat flux (the ‘coupled flux’) depends
on the average of a product between ψ1 and a horizontal derivative of ψ2, it is clear
that a component of ψ2 that is proportional to ψ1 also only provides a dynamically
irrelevant (and trivial) noisy contribution to the heat flux and does not reflect the
intensity of baroclinic instabilities. Thus, a dynamically meaningful heat flux exists
only due to a component of ψ2 that is decorrelated from ψ1. The “coupled” flux is
also affected by the boundary effects but it nonetheless contains the critical
contribution from the fluxes emerging due to baroclinic instability. We thus focus
on the prediction of the ‘coupled’ component of the medidional upper-layer heat
flux from SSH snapshots, noting that the ‘trivial’ component could be exactly
calculated from SSH data and added if necessary to give an estimate of the whole
flux; we choose not to include the ‘trivial’ component in the calculation of the
prediction skill because this would artificially increase it.

It is well known that the total heat flux can be partitioned into divergent and
rotational components (as opposed to our ‘coupled’ and ‘trivial’ components), of
which only the divergent component contributes to the heat flux divergence71.
Here we reconstruct the total heat flux—which amounts to predicting the coupled
component—from which the heat flux divergence (or any other quantity) can then
be determined. Note, it is only the heat flux divergence that contributes to a local
heat flux tendency.

Finally, for any given subdomain, SSH snapshots and corresponding eddy heat
fluxes are then used as training inputs and outputs for the data-driven mapping
methods. Importantly, we aim to predict the instantaneous flux given an
instantaneous SSH snapshot and, although the CNN results are evaluated on
continuous timeseries (Fig. 3d), all the training points are treated as independent
and our method in no way attempts to forecast the time evolution of SSH.

CNN architecture and performance measures. The optimal CNN architecture
used in this study is schematically shown in Fig. 2, consisting of four pooling and
three convolutional layers. After the third convolution the features are flattened
into a 1D vector and passed into a two-layer fully connect neural network which
finally predicts the flux. ReLu (i.e. maxð0; xÞ) was used as the nonlinear activation
function since it outperformed the sigmoid and a hyperbolic tangent functions. In
summary, a convolutional layer works by convolving a small weight filter matrix
(Fig. 2b, rightmost column) over the input image and then passing each output
pixel through the activation function. The activation function serves to add non-
linear properties to the network, allowing it to learn highly complex mappings.
These layers are stacked on top of one another (this is the ‘deep’ in ‘deep learning’)
in between pooling layers which downsize the image by selecting the maximum of
4 local pixels. The filter weights and fully connected weights are learned (trained)
by backpropagtion; the derivative of a cost measuring the error in the flux pre-
diction is found with respect to all of the weights in the network which are then
each updated a small amount so as to reduce the loss. The power of CNNs comes
from the fact that the filters of each convolutional layer are learned from the data as
part of the training process, not specified a priori.

The hyperparameters were chosen to optimize the network for the task of flux
reconstruction, specifically: the convolution matrices had horizontal dimensions of
4 × 4 and gradient descent was achieved using Kingma and Ba’s AdamOptimizer
algorithm61 with default training rate of 0.001. To reduce overfitting, dropout

(where, whilst training, certain units are randomly set to zero, forcing the network
to perform a sort of averaging over many possible models, rather that developing
complex co-adaptations specific to the dataset it is training on) with a probability of
30% was implemented between the first and second fully connected layers. L1 and
L2 weight regularization (essentially penalizing the network for having weights
which are too large) was tested for varying strengths over 6 orders of magnitude. L1
regularization had no affect, L2 regularization gave a small increase in performance
( ~+0.02 skill) with a strength of 0.0001, and further reduced overfitting. The CNN
was set to minimize the loss function chosen as the mean squared error between
the true flux yt and the CNN prediction yp. The network was coded in Python using
Google’s machine learning package TensorFlow72.

To evaluate the performance of the CNN and other data-driven methods, we
use the skill, S, and the correlation coefficient, R, defined as

Skill ¼ 1�
1
N

PN
i¼1 ðyp;i � yt;iÞ2

σ2yt

 !1
2

and R2 ¼
1
N

PN
i¼1ðyp;i � ypÞðyt;i � ytÞ

σypσyt

 !2

;

ð6Þ
where σyt ; σyp are the standard deviation of the true and predicted eddy heat fluxes

yt, yp. The skill and the correlation coefficient both approach 1 for a perfect
prediction; however, there are important differences in the interpretation of these
metrics. The skill, a monotonically decreasing function of the squared loss, can be
negative if the prediction is worse than the data mean, i.e. predicting the average of
the eddy heat fluxes corresponds to a zero skill. The square of the correlation
coefficient, R2, provides a useful measure of a fraction of variance that is explained
by the prediction, but it in some cases fails to be a reliable measure of accuracy as it
is insensitive to shifts in the mean or multiplication by a constant multiple.
Throughout the paper we specify both metrics.

Since NN training involves stochasticity in both defining its initial parameters
and during their batch optimization, we defined their performance based on an
average metrics in the following way. First, we evaluate NN skill on a validation
dataset (10 times per epoch) and obtain top 100 results. Second, we evaluate the
skill on the entire test data using each of the CNN model parameters corresponding
to the top 100 validation skills. The average of the test skill and its standard
deviation is the one we report in our study. The choice of using averages over top
100 validation skills biases our skill metrics slightly lower compared to the
maximum skill, but the difference is only about 5%.

Benchmarks and additional tests. We compare CNN performance to a number
of more standard statistical techniques and summarize the results in Fig. 5. Where
applicable we explored various architectures/hyperparameters but only report the
best result. The methods include:

● Linear regression. First we assume ψ2= ψ1 then perform simple linear
regression on the predicted flux. To first order Fig. 1b shows these two fields
are proportional. Given the estimated ψ2 we then calculate the eddy heat flux,
which in a non-periodic domain doesn’t have to be zero even if ψ2 is
proportional to ψ1. 2 trainable parameters, O(1 cpu second).

● Principal component analysis (PCA). By finding the PCA basis set for
concatenated training-ψ1 & ψ2 snapshots and retaining an optimal number of
modes, test-ψ1 images can be used to find an estimate for their corresponding
ψ2 field, from which the eddy heat flux is found. PCA is also known under the
names of Proper Orthogonal Decomposition or EOFs. Zero trainable
parameters, O(1 cpu hour) to find PCs.

● Support vector machine (SVM). Regression with a radial basis function kernel.
SVMs are an early but effective form of supervised machine learning good at
classification and regression. O(1 cpu hour) to train.

● Random forest regression. We implement random forest with 75 trees
estimators. Another commonly used machine learning algorithm for
regression problems. O(1 cpu hour) to train.

● Fully connected neural networks (FC NN). We use a basic neural network with
2 hidden layers of 100 and 10 neurons respectively, ReLU activation, mean
square error as the loss function, and no dropout. This is a basic form of deep
supervised learning which treats the input images as flattened vectors. The
results do not significantly change if a higher number of neurons is used. O
(400,000) trainable parameters, O(1) cpu hour to train.

● Convolutional neural networks (CNNs). These networks have the advantage of
explicitly treating the input as images (spatially ordered data) by applying
convolutional filters with adjustable parameters. Here we show the best results
from VGG-type73 and ResNet-type66 architectures. Our VGGNet architec-
tures are of various complexity depending on the number of convolutional
filters and number of neurons used in dense layers. The hyperparameters for
the CNN architectures referred by the numbers in Fig. 3:

(1) Two 3×3 convolutional layers (4 filters each) and 2×2 max-pooling layers
followed by a fully connected layer.
(2) A single 4×4 convolutional layer (8 filters) and a single max-pooling
(4×4 strides, 4×4 poolsize) with no hidden dense layers.
(3) Three 4×4 convolutional layers and 2×2 max-pooling layers followed by
a hidden layer with 10 neurons.
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(4) Three 4×4 convolutional layers (8,16, and 32 filters) and corresponding
2×2 max-pooling layers (4×4 poolsize) followed by a hidden layer with 128
neurons.
(5) Sixteen 4×4 convolutional layers and three 2×2 max-pooling layers
followed by a hidden layer with 128 neurons (similar to the VGG16
architecture).
(6) Five 4×4 convolutional layers (8,16,32,64, and 128 filters) and correspond-
ing 2×2 max-pooling layers (4×4 poolsize) followed by a hidden layer with 128
neurons.
(7) Corresponds to the ResNet architecture containing 52 layers (50
convolutional and two dense layers) with skip connections66. Dropout of
30% was used on the last fully connected layer in all networks. The network
graphs can be downloaded as png-files following the data link in the Data
Availability section.

The complexity of these CNNs varies significantly from O(300) trainable
parameters and O(10 cpu minutes) to train for the smallest CNN to O(23
million) trainable parameters taking O(1000 cpu hours) to train for ResNet.

A range of additional tests were performed to confirm that a skill of 0.36 is
approximately an upper bound, corresponding to a correlation with true heat flux
of R ≈ 0.8 with R2 ≈ 0.6. These test included applying filters to reduce the flux
contribution from eddies crossing subdomain boundaries, increasing and reducing
the QG model resolution, increasing the subdomain size to 2000 km, reducing the
subdomain size to 500 km, exploring the CNN architecture by changing the
number of filters and fully connected layers, oversampling the eddy flux outliers to
obtain a more uniform distribution among the training dataset. Without
exceptions, the average test skill obtained over the final 3 epochs of training was
never above 0.36, indicating that this may be a dynamically constrained upper
bound on the information contained in SSH snapshots.

Data availability
The necessary procedures to generate the data and reproduce the machine learning
techniques have been outlined in the manuscript. The datasets and python scripts used in
our study have been published in a Figshare repository74. We provided O(105) SSH
snapshots of mesoscale turbulence and corresponding domain-averaged eddy heat fluxes
as simulated by the two-layer QG model and split into training and validation data; the
data and Python/TensorFlow scripts including neural network architectures graphs and
hyperparameters that reproduce our training results can be downloaded here: https://doi.
org/10.6084/m9.figshare.11920905.v1. If additional data is needed, the QG model that
was used to generate the samples is available upon request from the authors.
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