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Some neurons are selective, whilst others are not 
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BUT WHY? 

Why are prefrontal cortex neurons fundamentally 
different to those in the motor cortex or the visual 
cortex? Is it to do with…

• …how they “learn”? 
• …the types of tasks they are performing? 
• …how often the specific tasks are required? 
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Mixed selectivity can be computationally 
advantageous
Rigotti et al. (2013) make a convincing argument for mixed selectivity in the 
PFC:
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Mixed 
Selectivity

High 
dimensional 

representations

Large capacity 
for input-output 

functions

Good for the 
PFC

Miller and Cohen (2001): “the PFC modifies responses to sensory data given 
changing contexts or goals”.

The cognitive tasks it must perform span an infinite range:
Complex tasks can be composed recursively from simpler tasks.

Compare to vision: visual scenes (although rich and varied) are generally 
built from a basic set of polygons, colours and textures.

But why does the PFC need a large input-output function capacity?



Yang et al.(2019): trained a complex RNN model of the PFC on 20 ‘complex’ cognitive tasks and found:

• highly mixed selective representations when the network was trained sequentially (Task 1…then task 
2…then task 3…). Matching what is found in the PFC, Mante et al. (2013).
• selective representations when trained randomly on all tasks

Perhaps, then, mixed selectivity in the PFC is due to how we learn cognitive skills as children - in a 
blocked, sequential fashion.

Compare to vision: from the day we are born we are presented with many visual scenes in a random 
order and begin to ‘learn’ them, mostly unsupervised

…or mixed selectivity could be a feature of how the PFC learns
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Sequential
Random



However, it’s still not clear
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Flesch & Summerfield et al. (2018) studied multiple task learning in humans and computers.

Analysis of human results suggest that blocked (aka sequential) training results in more factorized 
(potentially interpretable as selective) task representations. 

This is opposite to the Yang et al. result.

Either way: training style seems to be important.



Roadmap

2. A simple model trained on simple tasks



QUESTION
• Will this neuron be equally 
important in both tasks? Or selective 
• What happens when we vary 
architecture, tasks, training style 
etc…?

Task 1: f(x) = x0 + x1
Task 2: f(x) = x0x1
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HIDDEN LAYERS

x0

x1
f(x)

Start simple: Train a basic deep network to learn two different 
tasks
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Start simple: Train a basic deep network to learn two different 
tasks

CAVEAT 
This project is a work in progress:
• It’s primarily a machine learning project
• I have results, but not yet many conclusions
• I want to hear your suggestions



Measure “importance” by how much the expected loss over some test set changes when 
neuron is lesioned: 

So, to first order, 

Where h is a vector containing the state of the hidden neurons.
Taylor expanding gives: 

The importance of 
hidden neuron i for 
task A

Change in loss function tells us how ‘important’ a neuron is 
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Measure “importance” by how much the expected loss over some test set changes when 
neuron is lesioned: 

So, to first order, 

Where h is a vector containing the state of the hidden neurons.
Taylor expanding gives: 

The importance of 
hidden neuron i for 
task A

Change in loss function tells us how ‘important’ a neuron is 

trivial to calculate in pytorch, tensorflow etc... 



• ~1 means neuron is important for task A but not task B
• ~-1 means neuron is important for task B but not task A
•~0  means neuron is equally important for both tasks

Plotting these as 
histograms over all 
hidden neurons gives 
very good indication 
about how the 
network represents
the tasks 

Yang et al. (2019), NatNeuro

‘Relative Importance’ tells us about a neuron’s selectivity
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1) Task context splits network into distinct subnetworks
Six experiments, six results

Take home:
One 
architecture
… two 
networks. 
Task context 
is the switch.
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union of 100 models shown
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1) Task context splits network into distinct subnetworks
Six experiments, six results

Take home:
One 
architecture
…two 
networks

SANITY CHECK  

‘Relative importance’ is a good indicator of neuronal selectivity, as we see by these 
lesion experiments
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Task 1: f(x) = x0 + x1
Task 2: f(x) = x0x1
Task 2: f(x) = x0 + 1.5x1

(before)

2) How ‘similar’ tasks are matter a lot 
Six experiments, six results

Take home:
Networks 
can 
recognize 
and exploit 
when tasks 
are similar 
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Hidden layer size = 100
Hidden layer size = 5

(before)

3) Constraining the network forces mixed selectivity
Six experiments, six results

Take home:
Networks 
capacity 
matters  

13/23

x0

x1
f(x)



IN
PU

T

O
U

TPU
T

HIDDEN LAYERS

TA
SK

 C
O

N
TE

X
T

TA
SK

 C
O

N
TE

X
T

4) Which-task information can flow backwards
Six experiments, six results

Take home:
Early layers 
are not 
task-
independent 
feature 
extractors
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(before)

5) ‘Replay’ style learning encourages selectivity
Six experiments, six results

Take home:
Training 
order 
definitely 
matters
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6) Biased learning encourages neurons to prioritize the more 
infrequent task 

Six experiments, six results

Task 1 50:50 Task 2

Task 1 20:80 Task 2

Task 1 80:20 Task 2

(before)

Take home:
We need 
fewer neurons 
to perform 
common tasks, 
not more 
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Roadmap

3. A more complex model trained on MNIST tasks



A more complex model: CNN + MNIST subsets 
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TASK CONTEXT

Task 1: 
Odds vs 
Evens

Task 2: 
<5 vs 
>=5

Task 4:  
⊂ task 1

Task 3: 
Prime vs 
non-prime



Randomly training on all tasks
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union of 20 models shown



Randomly training on all tasks
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Task 4:  
⊂ task 1

Task 1: 
Odds vs 
Evens



Randomly training on all tasks
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Task 1: 
Odds vs 
Evens

Task 2: 
<5 vs 
>=5



Continual learning via Elastic Weights Consolidation 

Task 1 Task 2

Weight/bias-space
No EWC
EWC Quadratic weight penalty 

penalizes any changes in weights 
which are ‘important’ for 
previous tasks 
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Comparison of training styles
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Random Sequential (no EWC) Sequential (EWC)
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Random

When training is sequential 
neurons become mixed selective 
among all early tasks

Hypothesis: Selectivity, although 
optimal, is unstable and can’t 
survive the overwriting process 
of sequential learning

Sequential (no EWC)
Comparison of training styles

Sequential (EWC)



Roadmap

4. Conclusions



1. Networks recognize and exploit task similarities by developing mixed-selective 
neurons.

2. Tasks, architecture and learning style can all affect selectivity.

3. Neurons specialize in favour of rare tasks.

4. PFC neurons could be mixed because cognitive skills are learned in a more 
blocked fashion than, visual or motor skills [a highly debatable point in itself]. 
• Neurons can’t maintain selectivity to a task if they are later trained on many 

others.

5. Capacity constraints force neurons to be mixed selective to “save space”.

Conclusions 
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So how does this fit in to the literature?

Rigotti et al. (2013):

Yang et al. (2019)

Flesch et al. (2018)

Our results tentatively support Yang.

Our results support this study
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Code
Code available on my Github page:
github.com/TomGeorge1234
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